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Part 1 – Alex Graves

● Introduction to unsupervised learning

● Autoregressive models
● Representation learning
● Unsupervised reinforcement learning
● 10-15 minute break



Part 2 – Marc’Aurelio Ranzato

● Practical Recipes of Unsupervised Learning
● Learning representations
● Learning to generate samples
● Learning to map between two domains
● Open Research Problems
● 10-15 minutes questions (both presenters)
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Why Learn Without a Teacher?

If our goal is to create intelligent systems that can succeed at a wide 
variety of tasks (RL or supervised), why not just teach them those 
tasks directly?

1. Targets / rewards can be difficult to obtain or define.
2. Want rapid generalisation to new tasks and situations
3. Unsupervised learning is interesting



Why Learn Without a Teacher?

If our goal is to create intelligent systems that can succeed at a wide 
variety of tasks (RL or supervised), why not just teach them those 
tasks directly?

1. Targets / rewards can be difficult to obtain or define
2. Want rapid generalisation to new tasks and situations
3. Unsupervised learning is interesting



Why Learn Without a Teacher?

If our goal is to create intelligent systems that can succeed at a wide 
variety of tasks (RL or supervised), why not just teach them those 
tasks directly?

1. Targets / rewards can be difficult to obtain or define
2. Unsupervised learning feels more human
3. Want rapid generalisation to new tasks and situations



Why Learn Without a Teacher?

If our goal is to create intelligent systems that can succeed at a wide 
variety of tasks (RL or supervised), why not just teach them those 
tasks directly?

1. Targets / rewards can be difficult to obtain or define
2. Unsupervised learning feels more human
3. Want rapid generalisation to new tasks and situations



Transfer Learning
● Teaching on one task and transferring to another (multi-task 

learning, one-shot learning…) kind of works
● E.g. Retraining speech recognition systems from a language with 

lots of data can improve performance on a related language with 
little data

● But never seems to transfer as far or as fast as we want it to
● Maybe there just isn’t enough information in the 

targets/rewards to learn transferable skills?

Stop learning tasks, start learning skills – Satinder Singh



The Cherry on the Cake
● The targets for supervised learning contain far less information 

than the input data

● RL reward signals contain even less
● Unsupervised learning gives us an essentially unlimited supply of 

information about the world: surely we should exploit that? 

If intelligence was a cake, unsupervised learning would be the cake, 
supervised learning would be the icing on the cake, and reinforcement 
learning would be the cherry on the cake.

– Yann LeCun



Example
● ImageNet training set contains ~1.28M images, each assigned one of 

1000 labels
● If labels are equally probable, complete set of randomly shuffled labels 

contains ~log2(1000)*1.28M ≈ 12.8 Mbits
● Complete set of images uncompressed at 128 x128 contains ~500 

Gbits: > 4 orders of magnitude more
● A large conv net (~30M weights) can memorise randomised ImageNet 

labellings. Could it memorise randomised pixels?

UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION, Zhang et. al. 2016



Supervised Learning
● Given a dataset D of inputs x labelled with targets y, learn to predict 

y from x, typically with maximum likelihood:

● (Still) the dominant paradigm in 
deep learning: image classification, 
speech recognition, translation…



Unsupervised Learning
● Given a dataset D of inputs x, learn to predict… what?

● Basic challenge of unsupervised                                                               
learning is that the task is undefined 

● Want a single task that will allow the network generalise to many 
other tasks (which ones?)



● Simplest approach: do maximum likelihood on the data instead of 
the targets

Density Modelling

● Goal is to learn the ‘true’ distribution from which the data was drawn
● Means attempting to learn everything about the data 



Where to Look 
Not everyone agrees that trying to understand everything is a good 
idea. Shouldn’t we instead focus on things that we believe will one day 
be useful for us?

… we lived our lives under the constantly changing sky without sparing it a 
glance or a thought. And why indeed should we? If the various formations had 
had some meaning, if, for example, there had been concealed signs and 
messages for us which it was important to decode correctly, unceasing 
attention to what was happening would have been inescapable…

– Karl Ove Knausgaard, A Death in the Family



Problems with Density Modelling

● First problem: density modelling is hard! From having too few bits to learn 
from, we now have too many (e.g. video, audio), and we have to deal with 
complex interactions between variables (curse of dimensionality)

● Second Problem: not all bits are created equal. Log-likelihoods depend 
much more on low-level details (pixel correlations, word N-Grams) than on 
high-level structure (image contents, semantics)

● Third problem: even if we learn the underlying structure, it isn’t always clear 
how to access and exploit that knowledge for future tasks (representation 
learning)



Generative Models

● Modelling densities also gives us a generative model of the data (as 
long as we can draw samples)

● Allows us to ‘see’ what the model has and hasn’t learned
● Can also use generative models to imagine possible scenarios, e.g. 

for model-based RL

What I cannot create, I do not understand
– Richard Feynman



Autoregressive Models



The Chain Rule for Probabilities

Slide Credit: Piotr Mirowski



Autoregressive Networks

● Basic trick: split high dimensional data 
up into a sequence of small pieces, 
predict each piece from those before 
(curse of dimensionality)

● Conditioning on past is done via 
network state (LSTM/GRU, masked 
convolutions, transformers…), output 
layer parameterises predictions



Slide Credit: Piotr Mirowski
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Advantages of 
Autoregressive Models

● Simple to define: just have to pick an ordering
● Easy to generate samples: just sample from each predictive 

distribution, then feed in the sample at the next step as if it’s real 
data (dreaming for neural networks?)

● Best log-likelihoods for many types of data: images, audio, 
video, text…



Disadvantages of 
Autoregressive Models

● Very expensive for high-dimensional data (e.g millions of predictions 
per second for video); can mitigate with parallelisation during 
training, but generating still slow

● Order dependent: get very different results depending on the order 
in which predictions are made, and can’t easily impute out of order 

● Teacher forcing: only learning to predict one step ahead, not many 
(potentially brittle generation and myopic representations)



Language Modelling

Some of the obese people lived five to eight 
years longer than others.

Abu Dhabi is going ahead to build solar city 
and no pollution city.

Or someone who exposes exactly the truth while lying.

VIERA , FLA . -- Sometimes, Rick Eckstein dreams about baseball swings.

For decades, the quintessentially New York city has elevated its streets to the status of an icon.

The lawsuit was captioned as United States ex rel.

R. Jozefowicz et. al. Exploring the Limits of Language Modeling (2016)



WaveNets

van den Oord, A., et al. “WaveNet: A Generative Model for Raw Audio.” arxiv (2016).               

https://arxiv.org/abs/1609.03499


PixelRNN - Model

● Fully visible

● Model pixels with Softmax

● ‘Language model’ for images

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).



Pixel RNN - Samples

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).



Conditional Pixel CNN 

van den Oord, A., et al. “Conditional Pixel CNN.” NIPS (2016).
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Autoregressive over slices, then pixels within a slice

J. Menick et. al. Generating High Fidelity Images with subsample pixel networks and multidimensional upscaling (2018)



256 x 256 CelebA-HQ

J. Menick et. al. Generating High Fidelity 
Images with subsample pixel networks and 
multidimensional upscaling (2018)



128 x128 ImageNet

J. Menick et. al. Generating High Fidelity 
Images with subsample pixel networks and 
multidimensional upscaling (2018)



Video Pixel Network (VPN)

Kalchbrenner, N., et al. “Video Pixel Networks.” ICML (2017).



Handwriting
Synthesis

A. Graves, Generating Sequences with Recurrent Neural Networks (2013)



Autoregressive Mixture Models
Co-ordinate Density

Component Weights



Distribution over Sequences

Carter et. al., Experiments in Handwriting with a Neural Network (2016)



Representation Learning



The Language of Neural Networks

● Deep networks work by learning complex, often 
hierarchical internal representations of input data

● These form a kind of language the network uses to 
describe the data

● Language can emerge from tasks like object recognition: 
has pointy ears, whiskers, tail => cat (c.f. Wittgenstein)



C. Olah et. al. Feature Visualization, distill (2018)



Unsupervised Representations

● Task-driven representations are limited by the requirements of 
the task: e.g. don’t need to internalise the laws of physics to 
recognise objects 

● Unsupervised representations should be more general: as long as 
the laws of physics help to model observations in the world, they 
are worth representing



Reading the Latent Language
● We want neural networks to describe the data to us (image 

captioning without the captions?)

● Then we can re-use the descriptions to plan, reason, and 
generalise at a more abstract level

● Good density models must learn a rich internal language, but we can’t 
read it (distil for WaveNet?): we need to break open the black box

● One way to make representations more accessible is to force them 
through a bottleneck



Autoencoder

Input Reconstruction

Latent 
representation

Slide: Irina Higgins, Loïc Matthey
Reconstruction cost

Encoder Decoder
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Variational AutoEncoder

Encoder

Input Reconstruction

Decoder

Latent 
distribution

Reconstruction cost

Coding Cost

Kingma et al, 2014
Rezende et al, 2014

Slide: Irina Higgins, Loïc Matthey



Minimum Description Length for VAE 
● Alice wants to transmit x as compactly as possible to Bob, who knows 

only the prior p(z) and the decoder weights

● The coding cost is the number of bits required for Alice to transmit a 
sample from qθ(z|x) to Bob (e.g. bits-back coding) 

● The reconstruction cost measures the number of additional error 
bits Alice will need to send to Bob to reconstruct the data given the 
latent sample (e.g. arithmetic coding)

● The sum of the two costs is the total length of the message Alice needs 
to send to Bob to allow him to recover x (c.f. variational inference)

Chen at. al., Variational Lossy Autoencoder (2017)



Code Collapse
● Ideally a VAE would put high-level information in the codes, leave 

low-level information to the decoder 

● But when the decoder is sufficiently powerful (e.g. autoregressive) the 
coding distribution tends to ‘collapse’ to the prior p(z)

● This means no information is passed through the bottleneck and no latent 
representation is learned

● MDL suggests a reason: a powerful decoder can implicitly learn p(z), 
meaning that if each x is independently transmitted, the number of bits 
saved by the decoder by conditioning on z ≈ the cost of transmitting z



Thought Experiments 

● Experiment 1: An MNIST Decoder learns a uniform mixture over 10 
disjoint models. Prior is uniform over 10 classes. Conditioning on the image 
class saves ~ log2(10) bits, encoding the class costs ~ log2(10) bits

● Experiment 2: Pick 100 character strings at random from an encyclopedia. 
The context from the paragraph, article etc. is missing. Is it worth appending 
that information to each of the strings?



Learn the Dataset, Not the Datapoints
● Suggests a fundamental flaw with using log-likelihoods to find representations: never 

worth encoding high-level information

● Example: conditioning on ImageNet labels makes a huge difference to samples, tiny 
difference to log-probs (≈ log2(1000) bits)

● But one label applies to many data, so worth encoding high-level information if we 
only encode it once for the whole dataset (≈ 1000 x log2(1000) bits)

● Want to amortise the coding cost over the whole dataset

● Use high level information to organise low level data, not annotate it

…one must take seriously the idea of working with datasets, rather than datapoints, as 
the key objects to model.
– Edwards & Storkey, Towards a Neural Statistician, (2017)



Associative Compression Networks
● ACNs modify the VAE loss by replacing the unconditional prior p(z) with a 

conditional prior p(z|z’), where z’ is the latent representation of an 
associated data point (one of the K nearest Euclidean neighbours to z)

● p(z|z’) – parameterised by an MLP – models only part of the latent space, 
rather than the whole thing, which greatly reduces the coding cost 

● Implicit amortisation: the more clustered the codes, the cheaper they are
● Result: rich, informative codes are learned, even with powerful decoders.

Graves et. al., Associative Compression Networks for Representation Learning (2018)



MDL for ACN 

● Alice now wants to transmit the entire dataset to Bob, in any order 
(justified for IID data?)

● Bob has the weights of the associative prior, decoder and encoder
● Alice chooses an ordering for the data that minimises total coding cost 

(travelling salesman) and sends the data to Bob one at a time. 

● After receiving each latent code + error bits, he decodes the datapoint, 
then re-encodes it and uses the result to determine the associative 
prior for the next code



Red bits are 
different from 
standard VAE,
The rest is the 
same

C





Unordered: KL from unconditional prior
Ordered: KL from conditional ACN prior



Binary MNIST reconstructions: leftmost column are test set images



CelebA Reconstructions: leftmost column from test set



‘Daydream’ sampling: encode data, sample latent from conditional prior, 
generate new data conditioned on latent, repeat



Mutual Information
● Want codes that ‘describe’ the data as well as possible
● Mathematically, we want to maximise the mutual information 

between the code z and the data x

● For an autoencoder, the difference between decoding x with z and 
(optimally) decoding without z is a lower bound on MI(x, z), so 
minimising the reconstruction cost maximises MI

● But decoding is very expensive if we just want codes
● Are there other ways to maximise MI?



General Artificial Intelligence

Contrastive Predictive Coding

van den Oord et al., Representation Learning with Contrastive Predictive Coding (2018)
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General Artificial IntelligenceRepresentation Learning with Contrastive Predictive Coding
Gutmann et al., Noise-Contrastive Estimation (2009)
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General Artificial Intelligence

Speech - LibriSpeech

Representation Learning with Contrastive Predictive Coding

t-SNE on codes coloured by speaker identity

van den Oord et al., Representation Learning with Contrastive Predictive Coding (2018)



General Artificial Intelligence

Images - ImageNet

Representation Learning with Contrastive Predictive Coding



General Artificial Intelligence

NLP - BookCorpus

Representation Learning with Contrastive Predictive Coding



Unsupervised 
Reinforcement Learning



Auxiliary Tasks

● How can unsupervised learning help reinforcement learning?
● Simplest way is as an auxiliary task: maximise reward and 

minimise unsupervised loss with the same network

● Hope is that the representations learned for the unsupervised 
task will help with the RL task

● Also applies to supervised learning (e.g. semi-supervised 
learning, unsupervised pre-training) 



M. Jaderberg et. al., Reinforcement Learning with Unsupervised Auxiliary Tasks. (2016)

Pixel Control – auxiliary policies 
are trained to maximise change in 
pixel intensity of different regions 
of the input

Reward Prediction – given three recent 
frames, the network must predict the 
reward that will be obtained in the next 
unobserved timestep.

UNREAL Agent



Unsupervised RL Baselines

M. Jaderberg et. al., Reinforcement Learning with Unsupervised Auxiliary Tasks. (2016)



Sparse Rewards? More Cherries!

Many reward signalsSingle scalar reward signal



General Artificial Intelligence

Auxiliary Losses

Auxiliary loss is on policy
Predict 30 steps in the future

Reinforcement Learning on DM-Lab

Representation Learning with Contrastive Predictive Coding



General Artificial Intelligence

-- Batched A2C
-- Aux loss

Reinforcement Learning on DM-Lab

Representation Learning with Contrastive Predictive Coding



Intrinsic Motivation

● Unsupervised learning can guide the policy of an RL 
agent as well as shaping the representations

● Agent becomes intrinsically motivated to discover 
or control aspects of the environment, with or 
without an extrinsic reward

● Many variants, no consensus… 



Curious Agents
Can reward the agent’s curiosity by guiding it towards ‘novel’ observations 
from which it can rapidly learn. Many curiosity signals can be used:

● Prediction Error: choose actions to 
maximise prediction error in observations. 
Problem is noise addiction: inherently 
unpredictable environments become 
unreasonably interesting. One solution is to 
make predictions in latent space instead: 
network doesn’t import noise into latent 
representations, only useful structure

Pathak et. al. Curiosity-driven Exploration by Self-supervised Prediction (2017)



Curious Agents (cotd.)
● Bayesian Surprise: maximise KL between posterior (after seeing observation) and 

prior (before seeing it)
        Baldi et. al., Bayesian Surprise Attracts Human Attention. (2005)

● Prediction Gain: maximise change in prediction error before and after seeing an 
observation. Approximates Bayesian surprise.

Bellemare et. al. (Unifying Count-Based Exploration and Intrinsic Motivation. 2016)

● Complexity Gain: maximise increase in complexity of (regularised) predictive 
model. Assumes a parsimonious model will only increase complexity if it 
discovers a meaningful regularity. Needs a way of measuring complexity (e.g. VI).

Graves et. al. Automated Curriculum learning For Neural Networks. (2017)



Prediction Gain Syllabus

Automated Curriculum learning For Neural Networks. Graves et. al. (2017)



● Complexity Gain: Seek out data that 
maximise the decrease in bits of 
everything the agent has ever 
observed (!). In other words find (or 
create) the thing that makes the 
most sense of the agent’s life 
so far: science, art, music, jokes…

Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, 
Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes, Schmidhuber, 2008

Curiouser and Curiouser…



Empowered Agents
Instead of curiosity, agent can be motivated by empowerment: attempt to 
maximise the Mutual Information between the agent’s actions and the 
consequences of its actions (e.g. the state the actions will lead to). Agent wants 
to have as much control as possible over its future.

Klyubin et. al. Empowerment: A Universal Agent-Centric Measure of Control (2005)

One way to maximise mutual information is to classify the high level 
‘option’ that determined the actions from the final state (while keeping the 
option entropy high): contrastive estimation again? 
Gregor et. al. Variational Intrinsic Control (2016)



Conclusions
● Unsupervised learning gives us much more signal to learn from
● But it isn’t clear what the learning objective should be
● Density modelling is one option
● Autoregressive neural networks are a powerful family of density model
● Methods such as autoencoding and predictive coding can yield useful latent 

representations

● RL can benefit from unsupervised learning as an auxiliary loss, and from 
intrinsic motivation signals such as curiosity


