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Open questions:

a) how to learn from a non-stationary stream of data?
b) How to retain plasticity through time?

¢) How to avoid interference?

d) What is knowledge and how to transter 1t?

e) How to best generalize and optimize in this setting?
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Task 2: playing soccer at night




Open questions:

a) What tasks are compositional?

b) How to (learn to) decompose tasks into sub-tasks?

¢c) How to modularize computation? Implicit or explicit?
d) How to learn modular architectures?

e) How to grow knowledge over time?
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Outline

* Anytime Learning with Modular Architectures

* Data arrives in large mega-batches over time

* Metrics, Benchmarks & Models

* Representative experiments

L. Caccia, J. Xu, M. Ott, L. Denoyer, M. Ranzato. On Anytime Learning at Macroscale, arXiv 2021

* Continual Learning with Modular Architectures

* Tasks arrive in sequence. Each task has its own distribution.

* Metrics, Benchmarks & Models

* Representative experiments

T. Veniat, L. Denoyer, M. Ranzato. Efficient Continual Learning with Modular Networks and Task-Driven Priors, ICLR 2021
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Learning Framework
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Typically, we assume the rate at which the data arrives matches
the rate at which the model can update its parameters.
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Learning Framework

Do D5
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In practice, the rate at which the data arrives is often slower
than the rate at which the model can update its parameters.

Warning: if model does multiple passes over each mega-batch, then data is not i.i.d. anymore.

15



Learning Framework

D, <l D; < D, 4>
— — —
N— N— N— N— l
t1 t2 t3 t 4 tlme

D; : Dataset (mega-batch) received at the i-th time step. it consists of several
mini-batches. All datasets are sampled from the same distribution.

We assume that the time to update the model is negligible compared to time
interval between two consecutive mega-batches.

Model Desiderata:

* Low error at any point in time.
* Error rate decreases over time.
* Compute & memory efficiency.
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Learning Framework
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Anytime Learning at
Macro-Scale (ALMA) ¢

Model Desiderata:

* Low error at any point in time.
* Error rate decreases over time.
* Compute & memory efficiency.

Grefenstette and Ramsey. Approach to anytime learning. ICML 1992



Anytime Learning at Macro-Scale: Models
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Anytime Learning at Macro-Scale: Models
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Anytime Learning at Macro-Scale: Models
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Area under the learning curve provides metric of performance over the whole learning trajectory.
Liu et al. Towards automated deep learning: Analysis of the autodl challenge series 2019. PMLR 2020



Anytime Learning at Macro-Scale: Models
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Area under the learning curve provides metric of performance over the whole learning trajectory.



Conjecture #1

D3

t1 t2 t3 t4 tlme

i i i i
error rate : : . :
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: ' greedy finetuning
. ] . : tardy finetuning
L L 3 L time

Intermediate update rate.
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Crror rate
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Anytime Learning at Macro-Scale: Metrics

D, < D, <l D; <l D, <l
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Setting

* Take any dataset, and split it into B disjoint mega-batches.
* Go over the ordered sequences of mega-batches (only once).
* Model can:
* Loop over each mega-batch as much as it wants to (but it will be reflected in the compute).
* Extract validation set from each mega-batch for its own cross-validation.
* Decide how long to wait (nr. of mega-batches) before updating its parameters.
* Metrics: area under the curve of
* Error rate
* Memory

* Compute

25



Models

* Finetuning, with various waiting time.
* Fixed capacity.
* Growing capacity.

* Ensembling.
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Mixture of Experts (MoE)

MoE with two experts

Jordan and Jacobs. Hierarchical mixture of experts and the EM algorithm. Neural Computation 1994



Hierarchical Mixture of Experts (MoE)

* Modular * Hard to train
* Computationally efficient (hard gating)



Growing Mixture of Experts (2MokK)

new expert at layer 1 new expert at layer 2

How to make the growth step smooth and differentiable?



Growing Mixture of Experts (2MokK)

BEFORE AFTER

MoE with two experts i Three experts after splitting 3

new gate
7 { (tree structure)

| > output input | » output
new expert
module
WHEN: ?
WHAT:?
HOW: ?

30
Fritsch et al. Adaptively growing hierarchical mixtures of experts. NIPS 1996



Growing Mixture of Experts (2MokK)

MoE with two experts i Three experts after splitting ;

new gate
7 { (tree structure)

| > output input '

new expert ' > @

module
WHEN: Every M mega-batches [even better, based on validation loss]
WHAT: By splitting expert incurring the largest cumulative loss (at each layer).
HOW: Experts are copied; Gates are expanded into a tree.

Fritsch et al. Adaptively growing hierarchical mixtures of experts. NIPS 1996



Experiment: MNIST

100 mega-batches (600 samples per mega-batch).
3 layers fully connected neural net.

Models (with varying waiting time):

®* Fixed MoE with hard gating.

®* Growing MoE with hard gating.

®* Ensembling.

Learning algorithm:

® Fine-tuning.

In the arXiv paper you can find experiments on CIFAR 10 and on a large scale language modeling task.
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Test Error Rate
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Remarks

® Anytime learning at macro-scale is a realistic setting.
® Preliminary results show some promise in growing architectures over time.

® Bigger is better even at small scale and with fully connected nets, but it’ll never be
big enough. We still need to figure out how to grow.

® Several open questions:
® How to better train modular networks?
® Are there better modular architectures?

® Why do big models generalize better even on small datasets?
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Outline

* Continual Learning with Modular Architectures
* Tasks arrive in sequence. Each task has its own distribution.
* Metrics, Benchmarks & Models

* Representative experiments

T. Veniat, L. Denoyer, M. Ranzato. Efficient Continual Learning with Modular Networks and Task-Driven Priors, ICLR 2021
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Learning Framework
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Each dataset is a task, with its own input/output distribution.
Tasks may relate to each other, but in unknown ways.
Task ids are given to the learner both at training and test time.

At test time, learner can be asked to perform any previous task.

t, ts t, time

Ring. Continual learning in reinforcement environments. PhD thesis 1994

Thrun. A lifelong learning perspective for mobile robot control.

IRS 1994



Continual Learning Today

Typical streams (10 tasks):
® Permuted MNIST
e Incremental CIFAR-100

Metrics:
e Average accuracy on all tasks after learning from the stream.
e [Forgetting.

Issue: cannot measure transfer.
e 'Too few, too related tasks. Too many examples per task.
e There is no suitable metric.
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Continual TRansfer Learning (CTRL) Stream

Direct transfer stream: S = (tilh,tg, t,ta,t5,t] ) t; Lt
o R
Knowledge update stream: S™ = (¢, to, 3, t4, t5,1] ) el

Underlying datasets:

Transfer-to_3|m_|lar |.nput/ S — (tl,tz, t3, t4,t5, tll) e CIFAR 10
output distributions: e CIFAR 100
S = (t1,t2,t3,t4,15,t7) o MNIST
e Rainbow MNIST
e Fashion MNIST
Plasticity stream: SPI — (tl, t2, t3, t4, t5) e D. Textures
- e SVHN
Long stream: Slong Stream with 100 tasks (derived from 5 vision datasets).

: 45
Various degrees of relatedness.



Continual TRansfer Learning (CTRL) Stream

Direct transfer stream: S = (tf,tg, t3,14,15, tl_) t; L tj
7] > [t > [t

Knowledge update stream: S"' = (t, . to.ta.ta. 1 t+
( 122553 ¥4y Y9 1.) t’t',t” related

Transfer to similar input/ Qi — (tl,tg,tg,t4,t5,t,1) : Use transfer metric:

output distributions: /
"\ . .
S = (th t27 t3) t4) t5) tl)

S = whole sequence franster

S’ = last task

Plasticity stream: Spl — (tl,tz,t3,t4,t5)’

Long stream: Slong Stream with 190 tasks (derived from 5 vision datasets).
Various degree% of relatedness.



Holistic Performance Assessment

MNTDP-D
Independent

EWC Plasticit Forgetting
Transfer Memory
Output dist Efficiency

Average
Accuracy

Transfe

Compute
Input dist. Efficiency

Knowledge Direct
Update Transfer
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Model

Desiderata:
e Performs well in terms of:
O average accuracy
o Forgetting
o Transfer
e Scale sub-linearly with the number of tasks
e Compositional

Prior work:

e Regularization-based approaches (e.g., EWC)
e Memory replay approaches

e Modular architectures
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Modular Network with Task Driven Prior (MNTDP)

out[?ut

iInput

Task 1



MNTDP

0) Perturb previous net. 1) Train K nets independently. 2) Select based on validation set.

A A A A

Task 2 Task 2 Task 2 Task 2
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MNTDP

Task 1 Task 2 - Task 3
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Task 3

52

Find most similar previous task:
E.g., based on k-NN in feature space.

Select corresponding architecture.



MNTDP

0) Perturb previous net. 1) Train K nets independently. 2) Select based on validation set.

A A A A

Task 3 Task 3 Task 3 Task 3
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MNTDP

We have also a stochastic version of the algorithm
(REINFORCE), which uses less memory but works slightly
worse Iin practice.

Task 1 Task 2 - Task 3



Results on CTRL

Average

MNTDP-D Accuracy
Independent
EWC Plasticity —Forgetting
SP!
Transfer Memory
Output dist Efficiency
Sout
Transfe Compute
Input dist. Efficiency
Sin

Knowledge Direct
Update ST Transfer S
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Resultson S long

MNTDP-D Independent
MNTDP-S New-head freeze
le8 Online EWC HAT (Wide Alexnet)
2 -
=
Q
S
1 -
0.8
0.7 -
0.6 -
A
< 0.5
V
0.4 -
0.3 -
0 Zb 4b 6b 56 éO 160

Task id

MNTDP achieves highest
average accuracy while
growing sub-linearly in
memory.




Conclusion

* Datasets are not static, hence models should probably be non static either.

* Great opportunity for making learning more efficient (statistically and computationally).
* How to adapt capacity and retain efficiency both at training and test time?

* How to modularize learning?

* In this talk:

* & * Stationary setting (ALMA)
* _"‘ » Growing MoE

* Non-stationary setting
* C'TRL
R * MNTDP

* This relates to:
* Anytime and continual learning
* Multi-task/few-shot/meta learning
* AutoML

* Causal Learning
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THANK YOU

Myle Ott

Ludovic Denoyer Tom Veniat Lucas Caccia
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