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big picture first…
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Goal

A.I. :  build a system that is useful to people and 
that extends humans abilities. 

More interested in complementing human skills than 
necessarily replicating them.
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Extending Human Abilities: 
Examples

XIII century: extending human vision  
with eyeglasses
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Extending Human Abilities: 
Examples

XVII-XVIII centuries: “extending” human legs  
with steam engine for faster transportation



Extending Human Abilities: 
Examples

XXI century: extending the human brain  
by making information more easily accessible



What’s next?
• Build A.I. that actually works… 

DARPA Challenge videos
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Technical Challenges
• Content understanding 

• Vision 

• Audio 

• Text 

• Learn as much as possible from data with as little as possible human engineering 

• Sample and computational efficiency 

• Learn with as little supervision as possible 

• Knowledge transfer 

• Memory 

• Acquisition of common sense 

• End-to-end logical reasoning, planning 

• Robustness to uncertainty 9



What is Deep Learning and 
How Can It Help?

10 Goodfellow et al. “Deep Learning” MIT Press 2016



What is Deep Learning and 
How Can It Help?

Deep Learning (DL) is a class of Machine Learning 
methods that aims at learning feature hierarchies.
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What is Deep Learning and 
How Can It Help?

Philosophical justification (to be further clarified later): 

• Hierarchical models are potentially more efficient as they 
allow better feature sharing (compositionality). 

• Intermediate representations are good candidate for 
transferring knowledge to other tasks.  

• These models are inherently very modular.  

DL is not the solution but a useful set of tools for our quest 
towards A.I.
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Hierarchical Structure: Vision

13

pixel -> edge -> texton -> super-pixel -> part -> object

Images can be naturally decomposed in:



Hierarchical Structure: Vision
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There is evidence of a similar hierarchy in the mammalian visual cortex.



Hierarchical Structure: Vision
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pixel -> edge -> texton -> motif -> part -> object

Several (deep) approaches mimic a similar structure

...high-level parts

mid-level parts

low level parts

Input image

Lee et al. “Convolutional DBNs…”  ICML 09

- Efficiency via compositionality
- Compositionality and knowledge 
transfer via feature sharing

Example 1



Hierarchical Structure: Vision
pixel -> edge -> texton -> motif -> part -> object

Leonardis et al. “Learning hierarchical representations…”  ISRR 0716

Example 2

Several (deep) approaches mimic a similar structure

credit: R. Girshuck



Hierarchical Structure: Vision

Zhu et al. “A stochastic grammar of images…”  FTCGV 06

pixel -> edge -> texton -> motif -> part -> object

Example 3

Several (deep) approaches mimic a similar structure

credit: R. Girshuck



Hierarchical Structure

character -> word -> NP/VP/… -> clause -> sentence -> story

sample -> spectral band -> formant -> motif -> phone -> word

Speech Recognition

NLP
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Deep Learning in Practice
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Deep Learning in Practice
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Hu et al. “Finding tiny faces” 2016

ASR

He et al. “Mask R-CNN” 
2017



Recap
• Deep Learning = Methods to Learn Hierarchical 

Models. 

• When data has intrinsic hierarchical structure, it’s 
natural to use model with similar inductive bias.  

• Hierarchical Models are a useful tool for building AI. 

• Lots of successful applications.

21

How many deep learning methods are out there?



Kernel-SVM

linear SVM Perceptron

Boosting

auto-encoder k-means

sparse-coding

GMM

RBM

Neural Net

CNN + GAN

RNN

deep VAE

VAEDBN

Sum-Product Net

CNN

word2vec

THE SPACE OF ML METHODS

Disclaimer: this is an over-simplified illustration!
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Kernel-SVM

linear SVM Perceptron

Boosting

auto-encoder k-means

sparse-coding

GMM

RBM

Neural Net

CNN + GAN for image generation

RNN

deep VAE

VAEDBN

Sum-Product Net

CNN  for image classification

word2vec

CNN used as
 policy in RL

The same model  may be trained 
with different losses and amount of supervision

DEEP SHALLOW

SUPERVISED
UNSUPERVISED
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Kernel-SVM

linear SVM Perceptron

Boosting

auto-encoder k-means

sparse-coding

GMM

RBM

Neural Net

CNN + GAN

RNN

deep VAE

VAEDBN

Sum-Product Net

CNN

word2vec

PROBABILISTIC

Some of the methods we are going to discuss

DEEP SHALLOW

SUPERVISED
UNSUPERVISED



Recap
• Hierarchical models are a good tool for AI 

• There are many ways to structure hierarchical models. 

• Depending on the application (properties of the data 
and task to solve), hierarchical models may need to 
be more or less deep, and they may have particular 
structure / constraints. 

• The amount of supervision strongly determines the 
training method.

28



Software Packages
• Caffe2: https://caffe2.ai/  

• pyTorch: http://pytorch.org/  

• TensorFlow: https://www.tensorflow.org/  

• Theano: http://deeplearning.net/software/theano/  

• Torch: http://torch.ch/ 

29
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https://caffe2.ai/
http://pytorch.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://torch.ch/
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Outline
• PART 0  [lecture 1] 

• Motivation 

• Training Fully Connected Nets with Backpropagation 

• Part 1  [lecture 1 and lecture 2] 

• Deep Learning for Vision: CNN 

• Part 2  [lecture 2] 

• Deep Learning for NLP 

• Part 3 [lecture 3] 

• Modeling sequences
34
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Neural Networks 

Ranzato

Assumptions (for the next few slides):
 The input image is vectorized (disregard the spatial layout of pixels)
 The target label is discrete (classi(cation)

Question: what class of functions shall we consider to map the input 
into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the 
“simpler” functions? What is the interpretation?

Answer: later...
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Neural Networks: example 

h
2

h
1x

max 0,W 1
x  max 0,W 2

h
1 W

3
h
2

Ranzato

    input

    1-st layer hidden units

    2-nd layer hidden units

    output

Example of a 2 hidden layer neural network (or 4 layer network, 
counting also input and output).

x

h
1

h
2

o

o
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Forward Propagation

Ranzato

Def.: Forward propagation is the process of computing the 
output of the network given its input.
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Forward Propagation

Ranzato

h
1=max0,W 1

xb1

x∈RD W
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×D
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1 h
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N
1

x

    1-st layer weight matrix or weightsW
1

    1-st layer biasesb
1

o

The non-linearity                         is called ReLU in the DL literature.
Each output hidden unit takes as input all the units at the previous 
layer: each such layer is called “fully connected”.

u=max 0,v 

h
2

h
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max 0,W 1
x  max 0,W 2

h
1 W

3
h
2
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Forward Propagation

Ranzato
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Forward Propagation

Ranzato
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Alternative Graphical Representation

Ranzato
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Interpretation

Ranzato

Question: Why can't the mapping between layers be linear?

Answer: Because composition of linear functions is a linear function. 
Neural network would reduce to (1 layer) logistic regression.

Question: What do ReLU layers accomplish?

Answer: Piece-wise linear tiling: mapping is locally linear.

Montufar et al.  “On the number of linear regions of DNNs” arXiv 2014 
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Ranzato

[0/1]

[0/1]

[0/1]

[0/1] [0/1]

[0/1]

[0/1]

[0/1]

ReLU layers do local linear approximation. Number of planes grows 
exponentially with number of hidden units. Multiple layers yeild exponential 
savings in number of parameters (parameter sharing).

Montufar et al.  “On the number of linear regions of DNNs” arXiv 2014 

ReLU layers do local linear approximation. Number of planes grows 
exponentially with number of hidden units. Multiple layers yield exponential 
savings in number of parameters (parameter sharing).
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Interpretation

Ranzato

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a 
hierarchical architecture is potentially more e@cient because 
intermediate computations can be re-used. DL architectures are 
e@cient also because they use distributed representations which 
are shared across classes.

[0  0  1  0  0  0  0  1  0  0  1  1  0  0  1  0 … ]

Exponentially more e@cient than a 
1-of-N representation (a la k-means)

truck feature
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Interpretation

Ranzato

[0  0  1  0  0  0  0  1  0  0  1  1  0  0  1  0 … ]

[1  1  0  0  0  1  0  1  0  0  0  0  1  1  0  1… ] motorbike

truck
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Interpretation

Ranzato

Input image

low level 
parts

prediction of class

mid-level 
parts

high-level 
parts

 distributed representations
 feature sharing
 compositionality

...

Lee et al. “Convolutional DBN's ...” ICML 2009 



pyTorch demo

48

import torch 
import torch.nn as nn 
from torch.autograd import Variable 
import numpy as np 
import matplotlib 
import matplotlib.pyplot as plt 

ndim = 1 
nhid = 200 
nout = 1 
nsamples = 1000 
net = torch.nn.Sequential(nn.Linear(ndim, nhid), nn.ReLU(),  
                                          nn.Linear(nhid, nhid), nn.ReLU(), nn.Linear(nhid, nout)) 
print(net) 
inputs = torch.arange(-3,3,0.01).view(-1, 1) 
outputs = net.forward(Variable(inputs)) 

fig, ax = plt.subplots() 
ax.plot(inputs.squeeze().numpy(), outputs.data.squeeze().numpy()) 
plt.show() 
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Interpretation

Ranzato

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the 
answer. In general, the wider and the deeper the network the more 
complicated the mapping. 

Question: What does a hidden unit do?

Answer: It can be thought of as a classi(er or feature detector.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned.
First, we need to de(ne a measure of quality of the current mapping.
Then, we need to de(ne a procedure to adjust the parameters.

Disclaimer: these are just suggestive conjectures. In practice, a fully connected 
net (as deep as you wish) has never worked well in vision/audio processing. We 
will shortly discuss how and what makes this work in practice…
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h
2

h
1x o

Loss

max 0,W 1
x  max 0,W 2

h
1 W

3
h
2

L x , y ; =−∑ j
y j log p c j∣x 

pck=1∣x =
e
o
k

∑
j=1

C

e
o j

Probability of class k given input (softmax):

(Per-sample) Loss; e.g., negative log-likelihood (good for classi(cation of 
small number of classes):

Ranzato

How Good is a Network?

y=[00 .. 010 .. 0 ]
k1 C

Cross-Entropy Loss
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Training

∗=arg min∑n=1

P

L xn , yn ; 

Learning consists of minimizing the loss (plus some regularization 
term) w.r.t. parameters over the whole training set.

Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure to 
compute gradients of the loss w.r.t. parameters in a multi-layer neural 
network.

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986
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Derivative w.r.t. Input of Softmax

L x , y ; =−∑ j
y j log p c j∣x 

pck=1∣x =
e
o
k

∑ j
e
o j

By substituting the (st formula in the second, and taking the derivative 
w.r.t.        we get: o

∂L
∂o

= p c∣x− y

HOMEWORK: prove it!

Ranzato

y=[00 ..010 .. 0 ]
k1 C

oBy substituting the first formula in the second one, and taking 
the derivative w.r.t. o  we get:
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Backward Propagation

h
2

h
1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:

∂ L/∂ o

∂L
∂ o

max 0,W 1
x  max 0,W 2

h
1 W

3
h
2

∂ L

∂W 3
=

∂ L
∂ o

∂ o

∂W 3
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Backward Propagation

h
2

h
1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:

∂ L/∂ o

∂ L

∂W 3
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∂ L
∂ o

∂ o

∂W 3

∂L
∂ o

max 0,W 1
x  max 0,W 2
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∂ L
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2 T



55

36

Backward Propagation

h
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1x
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Given                 and assuming we can easily compute the 
Jacobian of each module, we have:
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Backward Propagation

h
2

h
1x

Loss
y

Given                 and assuming we can easily compute the 
Jacobian of each module, we have:
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Backward Propagation

h
1x

Loss
y

Given          we can compute now:
∂ L

∂h2

∂ L

∂h1
=

∂ L

∂h2
∂ h2

∂h1
∂ L
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∂ L
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∂ L
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Ranzato

max 0,W 1
x  max 0,W 2

h
1 W

3
h
2
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Backward Propagation

x

Loss
y

Given          we can compute now:
∂ L

∂h1

∂ L

∂W 1
=

∂ L

∂h1
∂ h1

∂W 1

∂ L

∂h1

Ranzato
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x  max 0,W 2
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Backward Propagation

Ranzato

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. diPerentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input 
and parameters at every layer). 

Note: FPROP and BPROP are dual of each other. E.g.,: 

+

+

FPROP BPROP

S
U

M
C

O
P

Y
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Optimization

Stochastic Gradient Descent (on mini-batches):

 −
∂ L
∂

,∈0,1

Stochastic Gradient Descent with Momentum:

 0.9 
∂ L
∂

 − 

Ranzato

Note: there are many other variants...

more GPU friendly
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Optimization

Stochastic Gradient Descent (on mini-batches):

 −
∂ L
∂

,∈0,1

Stochastic Gradient Descent with Momentum:

 0.9 
∂ L
∂

 − 

Ranzato

Note: there are many other variants...

accelerates initial convergence 
at the beginning of training.

works always surprisingly well;
learning rate should be annealed 

over time. 

there are 2nd order methods which take into 
account curvature, but so far they have never

worked consistently better in terms of generalization. 
Optimization is surprisingly easy.



Recap
• Neural Net is a chain of non-linear operations, 

implementing highly non-linear functions. 

• Forward pass computes the error. 

• Backward pass computes gradients w.r.t. inputs at 
each layer and parameters. 

• Optimization done by vanilla stochastic gradient 
descent.
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Question: How does all of this apply to vision?
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Outline
• PART 0  [lecture 1] 

• Motivation 

• Training Fully Connected Nets with Backpropagation 

• Part 1  [lecture 1 and lecture 2] 

• Deep Learning for Vision: CNN

• Part 2  [lecture 2] 

• Deep Learning for NLP: word embeddings 

• Part 3 [lecture 3] 

• Modeling sequences: RNNs and Graph Transformer Networks
65
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Example:  200x200 image
                  40K hidden units

         ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Ranzato
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Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).
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STATIONARITY? Statistics is similar at 
diPerent locations

Ranzato

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer

Example: 200x200 image
                40K hidden units
                Filter size: 10x10

      4M parameters
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Convolutional Layer

Share the same parameters across 
diPerent locations (assuming input is 
stationary):
Convolutions with learned kernels

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
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Convolutional Layer

Ranzato
Mathieu et al. “Fast training of CNNs through FFTs” ICLR 2014
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Convolutional Layer

*    
    

-1 0 1
-1 0 1
-1 0 1

Ranzato

=   
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Learn multiple (lters.

E.g.: 200x200 image
        100 Filters
        Filter size: 10x10

   10K parameters

Ranzato

Convolutional Layer
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h j
n=max 0,∑

k=1

K

hk
n−1∗wkj

n 

Ranzato

Conv.
layer

h1
n−1

h2
n−1

h3
n−1

h1
n

h2
n

output 
feature map

input 
feature map

kernel

Convolutional Layer
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h j
n=max 0,∑

k=1

K

hk
n−1∗wkj

n 

Ranzato

h1
n−1

h2
n−1

h3
n−1

h1
n

h2
n

output 
feature map

input 
feature map

kernel

Convolutional Layer
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h j
n=max 0,∑

k=1

K

hk
n−1∗wkj

n 

Ranzato

h1
n−1

h2
n−1

h3
n−1

h1
n

h2
n

output 
feature map

input 
feature map

kernel

Convolutional Layer
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Ranzato

Question: What is the size of the output? What's the computational 
cost?

Answer: It is proportional to the number of (lters and depends on the 
stride. If kernels have size KxK, input has size DxD, stride is 1, and 
there are M input feature maps and N output feature maps then:
- the input has size M@DxD 
- the output has size N@(D-K+1)x(D-K+1)
- the kernels have MxNxKxK coe@cients (which have to be learned)
- cost: M*K*K*N*(D-K+1)*(D-K+1)

Question: How many feature maps? What's the size of the (lters?

Answer: Usually, there are more output feature maps than input 
feature maps. Convolutional layers can increase the number of hidden 
units by big factors (and are expensive to compute).
The size of the (lters has to match the size/scale of the patterns we 
want to detect (task dependent).

Convolutional Layer
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A standard neural net applied to images:

- scales quadratically with the size of the input

- does not leverage stationarity

Solution:

- connect each hidden unit to a small patch of the input

- share the weight across space

This is called: convolutional layer.
A network with convolutional layers is called convolutional network.

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

Key Ideas
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Let us assume (lter is an “eye” detector.

Q.: how can we make the detection robust to 
the exact location of the eye?

Pooling Layer

Ranzato
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By “pooling” (e.g., taking max) (lter
responses at diPerent locations we gain
robustness to the exact spatial location
of features.

Ranzato

Pooling Layer
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Ranzato

Pooling Layer: Examples

h j
n x , y =max

x∈N x  , y∈N y h j
n−1x ,y

Max-pooling:

h j
n x , y =1/K∑

x∈N  x , y∈N  y
h j
n−1x ,y

Average-pooling:

h j
n x , y =∑x∈N  x , y∈N  y

h j
n−1 x ,y 

2

L2-pooling:

h j
n x , y =∑k∈N  j 

hk
n−1 x , y 2

L2-pooling over features:

most popular version
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Ranzato

Pooling Layer

Question: What is the size of the output? What's the computational 
cost?

Answer: The size of the output depends on the stride between the 
pools. For instance, if pools do not overlap and have size KxK, and the 
input has size DxD with M input feature maps, then:
- output is M@(D/K)x(D/K)
- the computational cost is proportional to the size of the input 
(negligible compared to a convolutional layer)

Question: How should I set the size of the pools?

Answer: It depends on how much “invariant” or robust to distortions we 
want the representation to be. It is best to pool slowly (via a few stacks 
of conv-pooling layers).
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Pooling Layer: Interpretation

Task: detect orientation L/R

Conv layer: 
linearizes manifold
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Pooling Layer: Interpretation

Conv layer: 
linearizes manifold

Pooling layer: 
collapses manifold

Task: detect orientation L/R
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Pooling Layer: Receptive Field Size

Conv.
layer

h
n−1 h

n

Pool.
layer

h
n1

If convolutional (lters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (at the input of the preceding conv. layer) of size: (P+K-
1)x(P+K-1)
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Pooling Layer: Receptive Field Size

Conv.
layer

h
n−1 h

n

Pool.
layer

h
n1

If convolutional (lters have size KxK and stride 1, and pooling layer 
has pools of size PxP, then each unit in the pooling layer depends 
upon a patch (at the input of the preceding conv. layer) of size: (P+K-
1)x(P+K-1)
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ConvNets: Typical Stage

Convol. Pooling

One stage (zoom)

courtesy of
 K. Kavukcuoglu

Ranzato
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One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.

Ranzato

ConvNets: Typical Stage

Convol. Pooling
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Note: after one stage the number of feature maps is usually increased 
(conv. layer) and the spatial resolution is usually decreased (stride in 
conv. and pooling layers). Receptive (eld gets bigger.

Reasons:
- gain invariance to spatial translation (pooling layer)
- increase speci(city of features (approaching object speci(c units)
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One stage (zoom)

Fully Conn. 
Layers

Whole system

1st stage 2nd stage 3rd stage

Input 
Image

Class
Labels

Ranzato

ConvNets: Typical Architecture

Convol. Pooling
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SIFT → K-Means → Pyramid Pooling → SVM

SIFT → Fisher Vect. → Pooling → SVM

Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012

Conceptually similar to:

Ranzato

Fully Conn. 
Layers

Whole system

1st stage 2nd stage 3rd stage

Input 
Image

Class
Labels

ConvNets: Typical Architecture

Note: all of them derive from…



ConvNets & Signal Processing
Recall a discrete wavelet transform: 

and its generalization (wavelet packet 
decomposition):

credit: wikipedia



Why ConvNets work?
• Natural image properties: 

• spatial correlations are local 

• spatial stationarity 

• scale invariance 

• Natural inductive bias: 

• Use convolutional filters of different sizes.. or even better (much more efficient in terms of 
compute and memory): cascade filter banks like in wavelet packet decomposition 

• Precursors of “deep” nets, except that they were linear 

• CNNs extend wavelet packets by making the processing non-linear (makes the whole system 
more powerful and robust to noise) and by slightly adapting the filters to the task & data.  

• Note: even (small) random filters have frequency/orientation selectivity!  

Bruna et al. “A mathematical motivation for complex-valued convolutional networks” Neural Comp. 2016



Why ConvNets work?

This is the most successful story of deep learning

• Natural image properties: 

• spatial correlations are local 

• spatial stationarity 

• scale invariance 

• Natural inductive bias: 

• Use convolutional filters of different sizes.. or even better (much more efficient in terms of 
compute and memory): cascade filter banks like in wavelet packet decomposition 

• Precursors of “deep” nets, except that they were linear 

• CNNs extend wavelet packets by making the processing non-linear (makes the whole system 
more powerful and robust to noise) and by slightly adapting the filters to the task & data.  

• Note: even (small) random filters have frequency/orientation selectivity!  
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ConvNets: Training

Algorithm:
Given a small mini-batch
- F-PROP
- B-PROP
- PARAMETER UPDATE

All layers are diPerentiable (a.e.). 
We can use standard back-propagation.

Ranzato



pyTorch example of a CNN

110
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Note: After several stages of convolution-pooling, the spatial resolution is 
greatly reduced (usually to about 5x5) and the number of feature maps is 
large (several hundreds depending on the application).

It would not make sense to convolve again (there is no translation 
invariance and support is too small). Everything is vectorized and fed into 
several fully connected layers.

If the input of the fully connected layers is of size Nx5x5, the (rst fully 
connected layer can be seen as a conv. layer with 5x5 kernels.
The next fully connected layer can be seen as a conv. layer with 1x1 
kernels. 

LeCun et al. “Gradient based learning applied to document recognition” IEEE 1998
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NxMxM, M small

H hidden units / 
Hx1x1 feature maps

Fully conn. layer /
Conv. layer (H kernels of size NxMxM)
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NxMxM, M small

H hidden units / 
Hx1x1 feature maps

Fully conn. layer /
Conv. layer (H kernels of size NxMxM)

K hidden units / 
Kx1x1 feature maps

Fully conn. layer /
Conv. layer (K kernels of size Hx1x1)
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Viewing fully connected layers as convolutional layers enables e@cient 
use of convnets on bigger images (no need to slide windows but unroll 
network over space as needed to re-use computation).

CNNInput
Image

CNN
Input
Image
Input
Image

TRAINING TIME

TEST TIME

x

y
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Viewing fully connected layers as convolutional layers enables e@cient 
use of convnets on bigger images (no need to slide windows but unroll 
network over space as needed to re-use computation).

CNNInput
Image

CNN
Input
Image

TRAINING TIME

TEST TIME

x

y

Unrolling is order of magnitudes more e(cient than sliding windows!

CNNs work on any image size!
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ConvNets: Test

At test time, run only is forward mode (FPROP).

Ranzato



Latest & Greatest CNNs: 
BatchNormalization 

• Before a non-linearity, this layer ensures that features are well scaled. 
• Improves optimization (convergence speed) and generalization.

Ioffe et al. “Batch Normalization: …” ICML 2015



Latest & Greatest CNNs: 
BatchNormalization 

• Before a non-linearity, this layer ensures that features are well scaled. 
• Improves optimization (convergence speed) and generalization.

Ioffe et al. “Batch Normalization: …” ICML 2015

At test time, use running 
averages of mean and std.



Latest & Greatest CNNs: 
ResNet 

• After each conv. layer, a batch norm. layer 
• after N conv. layers, a skip connection is 

summed at the output 
• No pooling layer, just strided convolutions. 

Whenever convolution is strided, increase 
number of feature maps accordingly 

• No fully connected layers  
• Much deeper nets (>100 layers)

He et al. “Deep Residual Learning for image recognition” arXiv 2015



Latest & Greatest CNNs: 
ResNet 

• Skip connections let gradients flow 
• Features are refined at every block 
• There is no massive number of 

parameters at the topmost layers (better 
generalization) 

• Striding (as opposed to pooling) may 
introduce slight aliasing, but it does not 
matter and makes processing faster. 

He et al. “Deep Residual Learning for image recognition” arXiv 2015

F2(F1(x) + x) + F1(x) + xoutput of 2nd block:



Latest & Greatest CNNs: 
ResNet 

He et al. “Deep Residual Learning for image recognition” arXiv 2015

ImageNet competition  
(1M images, 1K categories):

CNN started winning

ResNet



Latest & Greatest CNNs: 
Mask R-CNN 

He et al. “Mask R-CNN” arXiv 2017

A much more challenging task: instance segmentation

For every object predict: 
• Predict bounding box 
• Predict class label 
• Predict mask



Latest & Greatest CNNs: 
Mask R-CNN 

He et al. “Mask R-CNN” arXiv 2017



Latest & Greatest CNNs: 
Mask R-CNN 

He et al. “Mask R-CNN” arXiv 2017
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Fancier Architectures: Multi-Modal

Frome et al. “Devise: a deep visual semantic embedding model” NIPS 2013

CNN
Text

Embedding

tiger

Matching

shared representation
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Fancier Architectures: Multi-Modal

Frome et al. “Devise: a deep visual semantic embedding model” NIPS 2013

CNN
Text

Embedding

tiger

Matching

shared representation

We will discuss more recent works 
during the 3rd lecture!
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Fancier Architectures: Multi-Task

Zhang et al. “PANDA..” CVPR 2014

Conv
Norm
Pool

Conv
Norm
Pool

Conv
Norm
Pool

Conv
Norm
Pool

Fully
Conn.

Fully
Conn.

Fully
Conn.

Fully
Conn.

...

Attr. 1

Attr. 2

Attr. N

image
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Fancier Architectures: Generic DAG

Any DAG of diAerentialble 
modules is allowed!

Johnson et al. “Inferring and executing programs for visual reasoning” arXiv 2017
Andreas et al. “Learning to compose neural networks for Q&A” NAACL 2016
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Fancier Architectures: Generic DAG
If there are cycles (RNN), one needs to un-roll it.

Graves “OZine Arabic handwriting recognition..” Springer 2012

Pinheiro, Collobert “Recurrent CNN for scene labeling” ICML 2014



CNNs for Image Generation

Radford et al. “Unsupervised representation learning…” ICLR 2016



CNNs for Image Generation

Lample et al. “Fader Networks:…” arXiv 2017

Fantasizing faces with different attributes (age, gender, glasses, etc.):



Tips of the trade
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Choosing the Architecture
• It’s totally task dependent. What works for recognition is rather different than 

generation, for instance. 

• For classification of natural images, ResNet is probably the best bet, as of 
today. 

• If the task is related to classification of natural looking images and data is 
scarce, it’s usually a good idea to initialize from a pre-trained model. CNNs 
features generalize surprisingly well! 

• Ultimately, one needs to cross-validate. 

• The more labeled data is available, the more layers and the more filters usually 
yield better accuracy. Computational resources should be taken into account. 

• Leverage domain knowledge to design the architecture, be creative :)

133
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How To Optimize

 SGD (with momentum) usually works very well

 Pick learning rate by running on a subset of the data
Bottou “Stochastic Gradient Tricks” Neural Networks 2012
Start with large learning rate and divide by 2 until loss does not diverge
Decay learning rate by a factor of ~1000 or more by the end of training 

 Use          non-linearity

 Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation.

Ranzato

[nonissue]
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Improving Generalization

 Weight sharing (greatly reduce the number of parameters)

 Data augmentation (e.g., jittering, noise injection, etc.)

 Dropout 
Hinton et al. “Improving Nns by preventing co-adaptation of feature detectors” arxiv 
2012

 Weight decay (L2, L1)

 Sparsity in the hidden units

 Multi-task (unsupervised learning) 

Ranzato
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Good To Know

 Check gradients numerically by (nite diPerences

 Visualize features (feature maps need to be uncorrelated) 
and have high variance.

s
a

m
p

le
s

hidden unit

Good training: hidden units are sparse across samples 
                          and across features. 

Ranzato
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 Check gradients numerically by (nite diPerences

 Visualize features (feature maps need to be uncorrelated) 
and have high variance.

s
a

m
p

le
s

hidden unit

Bad training: many hidden units ignore the input and/or
                       exhibit strong correlations.

Ranzato

Good To Know
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 Check gradients numerically by (nite diPerences

 Visualize features (feature maps need to be uncorrelated) 
and have high variance.

 Visualize parameters

Good training: learned (lters exhibit structure and are uncorrelated. 

GOOD BADBAD BAD

too noisy too correlated lack structure

Ranzato

Good To Know

Zeiler, Fergus “Visualizing and understanding CNNs” arXiv 2013
Simonyan, Vedaldi, Zisserman “Deep inside CNNs: visualizing image classi(cation models..” ICLR 2014
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 Check gradients numerically by (nite diPerences

 Visualize features (feature maps need to be uncorrelated) 
and have high variance.

 Visualize parameters

 Measure error on both training and validation set.

 Test on a small subset of the data and check the error → 0.

Ranzato

Good To Know

Train and test on a small subset of the data and check that the 
error goes to 0 quickly.
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What If It Does Not Work?

 Training diverges:

Learning rate may be too large → decrease learning rate

BPROP is buggy → numerical gradient checking

 Parameters collapse / loss is minimized but accuracy is low

 Check loss function:

Is it appropriate for the task you want to solve?

Does it have degenerate solutions? Check “pull-up” term.

 Network is underperforming

Compute [ops and nr. params. →  if too small, make net larger

Visualize hidden units/params → (x optmization

 Network is too slow

Compute [ops and nr. params. → GPU,distrib. framework, make net 

smaller 

Ranzato



Questions?
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