Challenges in Neural
Machine Translations

Marc’Aurelio Ranzato
Facebook Al Research
ranzato@fb.com

ACDL - Pontignano, 19 July 2018


mailto:ranzato@fb.com

Outline

PART 0 [lecture 1]
e Natural Language Processing & Deep Learning
« Background refresher
Part 1 [lecture 1]
 Unsupervised Word Translation
Part 2 [lecture 2]
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e Uncertainty in Machine Translation
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Natural Language Processing

* Language is the most natural and efticient way that people
use to communicate.

* A.l. agents must concelivably communicate with humans to
perform their tasks efficiently.

* A.l. agents need to understand language (NLU).

* A.l. agents need to generate natural language (NLG).
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Challenges: NLU

I saw a man on a hill with a telescope.

Tl
Tl

nere’s a man on a
here’s a man on a

Tl

here’s a man, and

hill, and I'm watchmg him with my telescope.
hill, who I'm seeing, and he has a telescope.

ine’s on a hill that also has a telescope on it.
I'm on a hill, and I saw a man using a telescope.
There’s a man on a hill, and I'm sawing him with a telescope.

Prostitutes appeal to Pope.
 Prostitutes have asked the Pope for help.
« The Pope finds prostitutes appealing.

Language is ambiguous. Its meaning is context dependent,
and it may depend on common knowledge of the world.
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Challenges: NLG

A: How are you?

B: I don’t know.

A: Where are you going?
B: I don’t know.

A: What do you think about Deep Learning
B: I don’t know.

How are the startup is a lot of the startup is a lot of the startup is a lot of the
startup is a lot of the ...
rp https://cs.stanford.edu/people/karpathy/recurrentjs/

Long-range dependencies, grounding, large search space...

o M. Ranzato



NLP Today

 No model really "understands the meaning".

o Statistical models leverage vast amounts of data to
capture regularities which are sufficient to do well at
several non-trivial tasks, such as:

o Search/MT /dialogue systems in restricted domains /
Classification of documents...

 Deep Learning: enables learning of features in an
end-to-end framework, leveraging big datasets.

6 M. Ranzato



NLP lasks: Examples

outputy _ |
input Fixed Length | Variable Length

Fixed Length

Variable Length
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NLP lasks: Examples

Fixed Length | Variable Length

BoW text

Fixed Length classification

Variable Length

Easy: input and output have fixed length.

M. Ranzato



NLP lasks: Examples

Fixed Length | Variable Length

BoW text

Fixed Length classification

Variable Length

Input Is a sequence but output Is fixed length.
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NLP lasks: Examples

Fixed Length | Variable Length

BoW text Image

Fixed Length classification Captioning

Variable Length

The model has to generate a variable
length sequence at the output.
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NLP lasks: Examples

Fixed Length | Variable Length

BoW text Image

Fixed Length classification Captioning

Variable Length

The model has to transduce a variable length

seqguence into another variable length sequence.
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NLP lasks: Examples

Fixed Length | Variable Length

BoW text Image

Fixed Length classification Captioning

Variable Length

The focus of these lectures will be on Machine Translation:
* good use case
* Important practical applications
* metric not too bad...

12 M. Ranzato



NLP & Deep Learning

* Language is symbolic, structured and compositional.

* Deep learning is good at learning data dependent
representations, and it has a good inductive bias for
learning from compositional distributions.

* |n order to apply standard deep learning methods to NLP,
we need to first map discrete symbols to a continuous
space: word embeddings.

13 M. Ranzato
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e Uncertainty in Machine Translation

e Sequence-Level Prediction in Machine Translation
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Quick Refresh on the Basics

- Word Embeddings
* Language Modeling

e Machine Translation

15 M. Ranzato



_earning Word Representations

e [earn word representations from raw text (without supervision).

* word2vec review; for more gentle background visit:
http://www.cs.toronto.edu/~ranzato/files/ranzato_deeplearn17_lec2_nlp.pdf

* Practical applications:

* TJext classification
 Ranking (e.g., Google search, Facebook feeds ranking)
* Machine translation

e Chatbot

16 M. Ranzato


http://www.cs.toronto.edu/~ranzato/files/ranzato_deeplearn17_lec2_nlp.pdf

| atent Semantic Analysis

Example
doc1: the cat is furry
X doc?2: dogs are furry
(ij) doc1 doc2
E T 0 1
1o
1 1
Tmi .. T : .
term-document matrix 1 0

T;; (normalized) number of times word i appears in document |

Deerwester et'4l. “Indxing by Latent Semantic Analysis” JASIS 1990



| atent Semantic Analysis

X U by vT
(d;) (d;)
) )
[ 11 Tim T -7
[ 01 0 [ Vi ]
(67) — = (&)~ ||w|..|w
| 0 o _ | vy ]
| Tm,1 . Lm,n - = - - -

term-document matrix

T;; (normalized) number of times word i appears in document |

Deerwester et'4l. “Indxing by Latent Semantic Analysis” JASIS 1990



| atent Semantic Analysis

X U by vT
(d;) (d;)
) )
[ 11 Tim T -7
Kz 0| [ Vi ]
(t]) — = (f??) — u w; : :
| 0 oy | vy ]
| Tm,1 . Lm,n - = - - -

term-document matrix
T;; (normalized) number of times word i appears in document |

Each column of V', is a representation of a document in the corpus.
Each column is a D dimensional vector. We can use it to compare & retrieve documents.

Deerwester et'dl. “Indxing by Latent Semantic Analysis” JASIS 1990



| atent Semantic Analysis

X U by vT
(d;) (d;)
v )
_wl,l L1,n } - - - - -
P 0] [ v T
(tle’) — = (E;T) — up | -.-- | W . : . : . :
0 o1 [ w ]
| Tm1l .- Tmn - L - L

term-document matrix

T;; (normalized) number of times word i appears in document |

Each row of U, is a representation of a word in the dictionary.
Each row of U, is a vectorial representation of a word, a.k.a. embedding.

Deerwester et’3l. “Indxing by Latent Semantic Analysis” JASIS 1990



Word Embeddings

Convert words (symbols) into a D dimensional
vector, where D Is a hyper-parameter.

Once embedded, we can:

« Compare words.

* Apply our favorite machine learning method (DL) to represent
sequences of words.

At document retrieval time in LSA, the representation of a new
document is a weighted sum of word embeddings (bag-of-
words -> bag-of-embeddings): U’ x

21 M. Ranzato



pI-gram

* A bi-gram is a model of the probability of a word
given the preceding one:

p(wg|wg_1) w €V

* [he simplest approach consists of building a
(normalized) matrix of counts:

preceding word

C1,1 c. 617|V|
Ci,5 number of times word i
IS preceded by word |

current word

c(wi|wr—1) Ci, j

Cvir - Vv

22 M. Ranzato



N-gram

A n-gram is a model of the probability of a word
given the preceding ones:

p(wkz|wkz—17 I 7wk—n—|—1) Wi € V

* [he simplest approach consists of building a
(normalized) matrix of counts:

preceding words

C1,1 ce C1,M

d

|

current wor

C(Wg|Wk—1, -+ We—ny1) = Ci,j e C; 5 number of times word i is

_Gvie e VM preceded by word in context
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-actorized pi-gram

* We can factorize (via SVD, for instance) the bigram
to reduce the number of parameters and become
more robust to noise (entries with low counts):

O
VR
S
o
S
T
p—d
N—"
|
output word

C1.1

Clv,1

input word

Ci,j

C1,|V]

V],V

— UV V e RPxIVI

U e

 Rows of U store “output” word embeddings, and
columns of V store “input” word embeddings.

24
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-actorized pi-gram

 The same can be expressed as a two layer (linear)
neural network:

= input word —

g C1,1 61,|V|
c(wg|wi—1) =3 Ci. i .. | =0V

D)

“LEVILL V]IV

1-hot rep_re_sentation
of the input word

25
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-actorized pi-gram

 The same can be expressed as a two layer (linear)
neural network:

= input word —

g C1,1 61,|V|
c(wk\wk_l) :g Ci ] =UV

D)

LYvi - GVLIVIL

No need to multiply,
V is just a look up table!

0

0
0

1-hot rep_re_sentation
of the input word
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-actorized pi-gram

 The same can be expressed as a two layer (linear)
neural network:

= input word —

g C1,1 61,|V|
c(wg|wi—1) =3 Ci. i .. | =0V

D)

LYvi - GVLIVIL

No need to multiply,
V is just a look up table!

0

0

_6_ NOTE: Since embeddings are free, there is no
1-hot representation point adding non-linearities and more layers!
of the input word Here, depth does not help!
27
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-actorized pi-gram

* pbi-gram model could be useful for type-ahead
applications (in practice, it's much better to
condition upon the past n>2 words).

* Factorized model yields word embeddings as a by-
poroduct.

28 M. Ranzato



Word Embeddings

* LSA learns word embeddings that take into
account co-occurrences across documents.

* pbi-gram instead learns word embeddings that only
take into account the next word.

* |t seems better to do something in between, using
more context but just around the word of interest,
yielding a method called word2vec.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



sKip-gram

INPUT PROJECTION OUTPUT o . .
* Similar to factorized bi-gram model, but
t2) predict N preceding and N following
words.
w1 e Words that have the same context will
get similar embeddings. E.g.: cat & Kitty.
w(t) e

w(t+1) Bulk of computation is the the prediction
of words Iin context.

\‘ * |nput projection is just look-up table.

w(t+2) , Ce :
* Learning by cross-entropy minimization

via SGD.
Skip-gram

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



wora2vec

e code at: https://code.google.com/archive/p/word2vec/

* see evaluation from Tomas’s NIPS 2013 presentation at:
https://drive.google.com/file/d/OB7XkCwpl5KDYRWRNd1RzZWXQ2TWc/edit

Joulin et al. “Bag of tricks for efficient text classification” ACL 2016


https://code.google.com/archive/p/word2vec/
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities in Word Vector Space

WOMAN

/, AUNT QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING

@ The word vector space implicitly encodes many regularities
among words

credit T. Mikolov from https://drive.googIe‘r.sgom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit



https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Linguistic Regularities in Word Vector Space

Expression Nearest token
Paris - France + ltaly Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android
Montreal Canadiens - Montreal + Toronto | Toronto Maple Leafs

credit T. Mikolov from https://drive.googIe‘r.sgom/fiIe/d/OB7XkapI5KDYRWRnd1 RzWXQ2TWc/edit



https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit

Recap

 Embedding words (from a 1-hot to a distributed
representation) lets you:

e understand similarity between words
e plug them within any parametric ML model

e Several ways to learn word embeddings. word2vec is
still one of the most efficient ones.

* Note word2vec leverages large amounts of unlabeled
data.

34 M. Ranzato



Quick Refresh on the Basics

 Word Embeddings
- Language Modeling

e Neural Machine Translation
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. anguage Modeling

e the math...

wM) — pe(wM\’wM—1 Ceey wl)pe(’wM—1 !’wM—z ----- wl) . -pe(wz\’wl)pe(wﬁ

* application: type-ahead.

36 M. Ranzato



Neura\ Network LM

i-th output = P(w, = i| context)
A
softmax
L K s o00® )
. A
\
most | computation here \
\
\
\
|
tanh :
o ®0 ) |

Clwi—2) Clwiy)\ _-~

e @ O --- 0
A )
Table |-, ~.. Matrlx C Y
look_u Ll AR R R SR E R R R R R R N fessmssnensnanananans "
inC P sharcd parameters
1 o across words o
index for w,_,. index for w,_» index for w,_,

Y. Bengio et al. “A neural probabilistic language model” JMLR 2003



Neural Network LIV

* Natural extension of the factorized bi-gram
model.

* |Improved accuracy with more context. A bit
better than n-gram (count based methods).

* if we are just interested in word embeddings,
much more expensive than word2vec.

* |t gives a representation to ordered
sequences of n words.

Y. Bengio et al. “A neural probabilistic language model” JMLR 2003



Recurrent Neural Network

 |n NN-LM, the hidden state is the concatenation of
word embeddings.

* Key idea of RNNs: compute a (non-linear) running
average instead, to increase the size of the context.

* Many variants...

39 M. Ranzato



Recurrent Neural Network

* Elman RNN:

p(wiy1]h) = softmax(U°hg + b°)

hi = O‘(Urhk_l -+ Uzl(wk) -+ br)

* [raining (cross-entropy / negative log-likelihood loss):

LNLL = — Z log p(w;|w;—1,...,w1)
i—1

40
Elman “Finding structure in time” Cognitive Science 1990



RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi = O'(Urhk_l -+ U’l(wk) -+ br)

41
Elman “Finding structure in time” Cognitive Science 1990



RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

42
Elman “Finding structure in time” Cognitive Science 1990



RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

43
Elman “Finding structure in time” Cognitive Science 1990



RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

44
Elman “Finding structure in time” Cognitive Science 1990



RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

45
Elman “Finding structure in time” Cognitive Science 1990



RNN: Inference Time

e Elman RNN: p(wi1|h) = softmax(U°hy + b°)
hi, = O'(Urhk_l -+ Uzl(wk) -+ br)

46
Elman “Finding structure in time” Cognitive Science 1990



RNNS

* Inference in an RNN is like a regular forward pass in a deep
neural network, with two differences:
 Weights are shared at every layer.
* |nputs are provided at every layer.

47 M. Ranzato



RNNS

* Inference in an RNN is like a regular forward pass in a deep

neural network, with two differences:

* Weights are shared at every layer.
* |nputs are provided at every layer.

* [wo possible applications:
* Scoring: compute the log-likelihood of an input sequence (sum the
log-prob scores at every step).
 Generation: sample or take the max from the predicted distribution
over words at each time step, and feed that prediction as input at the
next time step.

48 M. Ranzato



RNN: Training Time

e [runcated Back-Propagation Through Time:
* Unfold RNN for only N steps and do:
* Forward
* Backward
 Weight update
* Repeat the process on the following sequence of N

words, but carry over the value of the last hidden
state.

Werbos “Backpropagation thro4l?gh time: what does it do and how to do it” IEEE 1990



RNN: Truncatea BPI1 1

Forward Pass

50
Elman “Finding structure in time” Cognitive Science 1990



RNN: Truncatea BPI1 1

Forward Pass

o1
Elman “Finding structure in time” Cognitive Science 1990



RNN: Truncatea BPI1 1

Forward Pass

52
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RNN: Truncatea BPI1 1

Backward Pass

53
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RNN: Truncatea BPI1 1

Backward Pass

54
Elman “Finding structure in time” Cognitive Science 1990



RNN: Truncatea BPI1 1

Backward Pass

55
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RNN: Truncatea BPI1 1

Parameter Update

o6
Elman “Finding structure in time” Cognitive Science 1990



RNN: Truncatea BPI1 1

Forward Pass




RNN: Truncatea BPI1 1

Forward Pass




RNN: Truncatea BPI1 1

Forward Pass




RNN: Truncatea BPI1 1

Backward Pass




RNN: Truncatea BPI1 1

Backward Pass




RNN: Truncatea BPI1 1

Backward Pass




RNN: Truncatea BPI1 1

Parameter Update




Recap

RNNs are more powerful because they capture a
context of potentially “infinite” size.

The hidden state of a RNN can be interpreted as a way
to represent the history of what has been seen so far.

RNNs can be useful to represent variable length
sentences.

There are lots of RNN variants. The best working ones
have gating (units that multiply other units): e.g.: LSTM
and GRU.

64 M. Ranzato



Quick Refresh on the Basics

 Word Embeddings
* Language Modeling

- Machine Translation

65 M. Ranzato



Brief History of MT

* Rule-based systems 1970 O (dictionary + prior)
e Statistical MT 1990 ~10,000
e Neural MT 2014 ~10,000,000

time amount of bitexts

66 M. Ranzato



Brief History of MT

e Rule-based Sys’[ems 1970 O (dictionary + prior)
o Statistical MT 1990 ~1Mf ~10,000
* Neural MT 2014 ~100Tf | ~10,000,000

time compute @ amount of bitexts

67 M. Ranzato



Neural Machine Translation

(in 3 slides)

Example:
ITA (SOLI rce) . Il gatto si e’ seduto sul tappetino.

\ 4

EN (target) * The cat sat on the mat.

Approach:

Have one RNN/CNN to encode the source sentence, and another RNN/
CNN/MemNN to predict the targef sentence.
The target RNN learns to (soft) align via attention.

Neural machine translation by jointly learning to align and translate, Bahdanau et al. ICLR 2015 M. Ranzato



sat on

cat

G(2)

F(X.Z)

G(Z)

o

© 9

cat

F(X.2)

9 © ©

G(2)

P

Y. LeCun’s diagram
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Source Target

1) Represent source

on

SEBG00 |

(Z'%)4
é—. (2)0 ->®

Source Encoder (RNN/CNN) ol

elelelelelele

il gatto si e’ seduto sul tappetino

&

n
Q)
—t
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Source

2) score each source word (attention)

dot product => softmax

plee]elo]ele

Source Encoder (RNN/CNN)

elelelelelele

il gatto si e seduto sul tappetino :

ey

71

Target

n
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Source Target

—

&

. 3) combine target hidden with source vector

Sum

GE

dot product => softmax

plee]elo]ele

Source Encoder (RNN/CNN)

elelelelelele

il gatto si e seduto sul tappetino :

n
Q)
—t
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Source Target

—

&

Sum

GE

dot product => softmax

plee]elo]ele

Source Encoder (RNN/CNN)

elelelelelele

il gatto si e seduto sul tappetino :

. 3) combine target hidden with source vector

n
Q)
—t

Alignment is learnt implicitly.

M. Ranzato



NMT Training & Inference

Training: predict one target token at the time and minimize
cross-entropy loss.

£TOkNLL — Z 1ng(t2‘t17 R 7ti—17 X)
1=1

74 M. Ranzato



NMT Training & Inference

Training: predict one target token at the time and minimize
cross-entropy loss.

Inference: find the most likely target sentence
(approximately) using beam search.

u = arg min — log p(u|x)

79 M. Ranzato



Beam Search




-0.5

Beam Search
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Beam Search
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Beam Search
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Beam Search
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NMT Training & Inference

Training: predict one target token at the time and minimize
cross-entropy loss.

Inference: find the most likely target sentence
(approximately) using beam search.

Evaluation: compute BLEU on hypothesis returned by the
iInference procedure

N

BLEU — BP ezn:1 % log pn,

o denerated sentences anrams Clip(Count(ngram matches))

Pn =
denerated sentences anrams Count(ngram)

BLEU: a method for automatic evaluation of machine translation, Papineni et al. ACL 2002 M. Ranzato



Challenges

* Most language pairs have little parallel data. How to estimate parameters”?

* One-to-many mapping / uncertainty, there does not exist a metric able to account for
uncertainty.

 Model is asked to predict a single token at training time, but the whole sequence at
test time.

e EXposure bias: training and testing are inconsistent because model has never
observed its own predictions at training time.

At training time, we optimize for a different loss.

e Evaluation criterion is not differentiable.

e Domain shift.

Six challenges for neural machine translation, Koehn et al. Workshop NMT, ACL 2017 M. Ranzato



Challenges

- Most language pairs have little parallel data. How to estimate parameters?

- One-to-many mapping / uncertainty, there does not exist a metric able to
account for uncertainty.

- Model is asked to predict a single token at training time, but the whole
sequence at test time.

e EXposure bias: training and testing are inconsistent because model has never
observed its own predictions at training time.

At training time, we optimize for a different loss.

e Evaluation criterion is not differentiable.

e Domain shift.

Six challenges for neural machine translation, Koehn et al. Workshop NMT, ACL 2017 M. Ranzato



Outline

PART 0 [lecture 1]
 Natural Language Processing & Deep Learning
* Neural Machine Translation
Part 1 [lecture 1]
- Unsupervised Word Translation
Part 2 [lecture 2]
* Unsupervised Sentence Translation
Part 3 [lecture 3]

e Uncertainty and Sequence-Level Prediction in Machine Translation
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Alexis Conneau Guillaume Lample Ludovic Denoyer Herve Jegou

Word Translation Without Parallel Data

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, Herve Jegou
ICLR 2018

https://arxiv.org/abs/1710.04087
CODE: https://qithub.com/facebookresearch/MUSE

85 M. Ranzato


https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE

[ earning from
| ow-Resource Language Pairs

* We could leverage:
* Limited amount of parallel data.
* Parallel data from other language pairs.

* [Large amount of monolingual data, which is
often more easily available.

86 M. Ranzato



Goal

* [Jraining an NMT system without supervision, using
monolingual data only.

* Admittedly, unrealistic but...

* Baseline for extensions using parallel data
(from language pair of interest or others).

e Scientific endeavor, towards our quest for a
good unsupervised learning algorithm.

87 M. Ranzato



Unsupervised Word Translation

* Motivation: A pre-requisite for unsupervised
sentence translation.

* Problem: given two monolingual corpora in two
different languages, estimate bilingual lexicon.

* Hint: the context of a word, is often similar across
languages since each language refers to the same
underlying physical world.

88 M. Ranzato



Vliethod

1) learn word embeddings (word2vec) separately on each language
using lots of monolingual data.

& ——

89 M. Ranzato



ornitorinco

car

1) learn word embeddings (word2vec) separately on each language
using lots of monolingual data.

i

I
90
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ornitorinco
car

ornitorinc

auto

2) learn a rotation matrix to roughly align the two domains.

E.g., via adversarial training: pick a word at random from each language, embed them,
project one of the two, and make sure distributions match.

X ; embedding i-th word in En
Y embedding j-th word in It Lp(0p|W) = —E; [logp(En|Wz;0p)| — E,, [log p(It|y; 0p)]

VW orthogonal matrix Lyw(Wbp) = —E; [log p(It|Wx;0p)] — I, log p(En|y; 6p)]

1 M. Ranzato



ornitorinc ornitorinco

dog

AN

——

cat

W x

car auto

2) learn a rotation matrix to roughly align the two domains.

E.g., via adversarial training: pick a word at random from each language, embed them,
project one of the two, and make sure distributions match.

X ; embedding i-th word in En
Y embedding j-th word in It Lp(0p|W) = —E; [logp(En|Wz;0p)| — E,, [log p(It|y; 0p)]

VW orthogonal matrix Lyw(Wbp) = —E; [log p(It|Wx;0p)] — I, log p(En|y; 6p)]

92 M. Ranzato



ornitorinc ornitorinco

dog

AN

——

cat

W x

car auto

3) lterative refinement via orthogonal Procrustes, using the most frequent
words.

Pick most frequent words, translate them via nearest neighbor, solve least square, and iterate.

X ; embedding i-th word in En
: 5 -
Y embedding j-th word in It Wy = argmin |[W; 1 X = Y||*,st. WW;, =1

M/ orthogonal matrix

93 M. Ranzato



ornitorinc ornitorinco

dog

kitty

cat

W x

car auto

3) lterative refinement via orthogonal Procrustes, using the most frequent
words.

Pick most frequent words, translate them via nearest neighbor, solve least square, and iterate.

X ; embedding i-th word in En
: 5 -
Y embedding j-th word in It Wy = argmin |[W; 1 X = Y||*,st. WW;, =1

M/ orthogonal matrix
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ornitorinc ornitorinco

dog

kitty

cat

W x

car auto

4) Build lexicon using metric that compensates for hubness.
There are words that have lots of neighbors, while others that are not neighbors of anybody.

X ; embedding i-th word in En CSLS(Wz,y) = 2cos(Wz,y) — rp,(Wz) — 'rIt(y)
, o | 1
yj embedding j-th word in It TED(W:E) =~ Z cos(Wz, y;)
VAV orthogonal matrix v €N, (W)
95
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ornitorinc ornitorinco

gattino

car auto

4) Build lexicon using metric that compensates for hubness.
There are words that have lots of neighbors, while others that are not neighbors of anybody.

X ; embedding i-th word in En CSLS(Wz,y) = 2cos(Wz,y) — rp,(Wz) — 'rIt(y)
Y embedding j-th word in It P (Wz) = = Z cos(Wz, ;)
VAV orthogonal matrix ye N, (Wa)
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Results on Word Translation

supervised unsupervised supervised unsupervised

approaches approaches approaches approaches
68 66.2

P@1
58.7
56.3
56
449 45.1
38.5 = ' 36.8 38.5 383
33.8
32
249 24.6 I I
20
en-it it-en

B Mikolov et al. (2013) [ Dinu et al. (2015) B8 Faruqui & Dyer (2014)2 Artetxe et al. (2017) B Smith et al. (2017)
B Procrustes — NN B Procrustes — CSLS [l Unsupervised —CSLS [ Procrustes — CSLS (wiki) [l Unsupervised — CSLS (wiki)

More results on several language pairs, analysis and other tasks in
the paper.
By using more anchor points and lots of unlabeled data,

we even outperform supervised approaches!
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MUSE

https://github.com/facebookresearch/MUSE

* 110 ground truth bilingual dictionaries

* code to align embeddings

98 M. Ranzato


https://github.com/facebookresearch/MUSE

Key ldea

* Learn representations of each domain.
* Jranslate by aligning sets of embeddings.

* How to apply this principle to sentences”

9 M. Ranzato



Outline

PART 0 [lecture 1]
 Natural Language Processing & Deep Learning
* Neural Machine Translation
Part 1 [lecture 1]
* Unsupervised Word Translation
Part 2 [lecture 2]
- Unsupervised Sentence Translation
Part 3 [lecture 3]

e Uncertainty and Sequence-Level Prediction in Machine Translation

100



Guillaume Lample Myle Ott Alexis Conneau Ludovic Denoyer

Unsupervised Machine Translation Using Monolingual Corpora Only
Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato
ICLR 2018

https://arxiv.org/abs/1711.00043

Phrase-Based and Neural Unsupervised Machine Translation
Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato
https://arxiv.org/abs/1804.07755
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https://arxiv.org/abs/1804.07755

Naive Application of MUSE

* |n general, this may not work on sentences
because:

* Without leveraging compositional structure,
space Is exponentially large.

* Need good sentence representations.

* Unlikely that a linear mapping is sufficient to
align sentence representations of two
languages.
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Toy lllustration

absolutely despicable the cat sat on the mat @ &

2D embeddings of valid sentences in the source language.
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Toy lllustration

Actually observed source sentences In
the monolingual data with underlying manifold.

104 M. Ranzato



Toy lllustration

v

Similarly for the target sentences (in red).

105



Toy lllustration

0 O

‘000‘

O o0

Empty dots correspond to unobserved translations.
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3 Principles of UnsupMT: #1

o.

Initialization: start by using good token-level
(e.g., word-level using MUSE) correspondences.

107 M. Ranzato



3 Principles of UnsupMT: #2

Language Modeling:
make sure generations belong to the desired language.

108 M. Ranzato



3 Principles of UnsupMT: #3

Source Language

Target Language

O actual source-domain translation
noisy source-domain sentence

2 R -
S O \T B
S O .EU
S & S
(g 'CUE

o X

2
target sentence

Back-Translation: reconstruct original sentence
from translation (cross markers), in both directions.

Sennrich et al. “Improving NMT models with monolingual data’> ACL 2016



3 Principles of UnsupMT: #3

source sentence

Source Language 'Q
L ¢
3 e I
S S
g S
—
= 3
S =
Target Language Q * 0 NS

noisy target-domain sentence

Back-Translation: reconstruct original sentence
from translation (cross markers), in both directions.

Sennrich et al. “Improving NMT models with monolingual data’> ACL 2016



Generic UnsupMT Algorithm

Algorithm 1: Unsupervised MT

1 Language models: Learn language models P and P
over source and target languages;

2 Initial translation models: Leveraging P and F;,
learn two 1nitial translation models, one 1n each
direction: PS(EZt and Pt(i)s;

3 for k=1 to N do

4 Back-translation: Generate source and target

sentences using the current translation models,

Pt(i:, Y and Ps(ﬁ_t b factoring in language
models, P, and F;;

5 Train new translation models Ps(i)t and Pt(i)s
using the generated sentences and leveraging Pk

and F:
6 end 111




lNnstantiations

* Phrase-based Machine Translation

e Neural Machine Translation

e Hybrid: PBSMT + NMT

112 M. Ranzato



PBSMT (in 1 slide)

* Training consists of:
* alignment of phrases
e construction of phrase tables (count-based)
* training of language model (n-gram)

* This is a good candidate for unsupMT because:
e memorization based, it has less parameters to fit.
|t often beats NMT when labeled data is scarce.

Koehn et al. “Statistical Phrase-Based Translation’> NAACL 2003



PBSMT: Initialization

* MUSE to align word/phrase embeddings

* Populate unigram (more generally, n-gram) phrase
tables by looking at cosine distance of neighbors:

6% cos(e(t;),We(s;))

Zk 6% cos(e(tr),We(s;))

p(tjlsi) =

target word source word MUSE rotation

114 M. Ranzato



PBSMT: Language Modeling

* Just an n-gram language model.

* Responsible for fixing incorrect entries in
ohrase table.

115 M. Ranzato



PBSMT: Back-Translation

lterative back-translation (5M sentences at the
time).

* As we iterate and phrase table gets better,
longer spans can be reordered.

116 M. Ranzato



PBSMT: Summary

Algorithm 2: Unsupervised PBSMT

1 Learn bilingual dictionary using Conneau
et al. (2018);
2 Populate phrase tables using Eq. 3 and learn a

language model to build P@O)

3 Use P %) to translate the source monolingual

s—t
dataset, yielding Dt
4 for i=1 to N do
. (1)
5 Train model P,_>s using D,
6 Use P,_'m to translate the target

monolingual dataset yielding Déi):
7 Train model P _), using D

8 Use P,.'_,, to translate the source

monolingual dataset, yielding D{‘):
9 end 117




lNnstantiations

e Phrase-based Machine Translation
- Neural Machine Translation

e Hybrid: PBSMT + NMT

118 M. Ranzato



NMT: Initialization

* For distant languages:
* MUSE unsupervised word alignment
* For languages that share tokens (word roots, etc.)

* Joint learning of embeddings with BPEs.

Sennrich et al. “NMT of rare words with subword units” ACL 2015 M. Ranzato



Joint Learning with BPEs

En
§2 - La costituzione ¢’ stata ..
- he constitution was ...
- La luna orbita intorno al..
- Lunar calendar is...

It
Merge the monolingual datasets.
Apply BPE tokenization.
Learn token embeddings; as many will be shared
and space Is common, there is no need to align.

120 M. Ranzato



NMT: Language Modeling

Since we work with a seg2seq model with attention, we
train the decoder LM with a denoising autoencoder task.

It DAE decoder

En DAE

encoder




NMT: Language Modeling

Since we work with a seg2seqg model with attention, we
train the decoder LM with a denoising autoencoder task.

Ref:Arizona was the first to introduce such a requirement .
Dl’Op Arizona was the first to such a requirement .
Arizona was first to introduce such a requirement .

Ref:Arizona was the first to introduce such a requirement.
Swap Arizona the first was to introduce a requirement such.
Arizona was the to introduce first such requirement a .

Even with attention, the model has to learn regularities in the input (not
just copy but a good language model).

122 M. Ranzato



NMT: back-translation

e given a mini-batch of sentences from the source
monolingual dataset do:

* Use the source-to-target model to translate them.

* Use these translations as input to the target-to-
source model and predict original inputs.

* Update parameters of target-to-source model.

* and vice versa, exchanging source with target.

123 M. Ranzato



An Alternative View

lllustration of the model during back-translation:

NagP!

encoder

124 M. Ranzato



An Alternative View

lllustration of the model during back-translation:

outer-encoder outer-decoder

Inner I inner m Inner I

NagP!

¢ encoder decoder | : encoder m decoder I
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An Alternative View

lllustration of the model during back-translation:

outer-encoder outer-decoder

Inner I inner m Inner I

NagP!

¢ encoder decoder | : encoder m decoder I

How to constrain the intermediate sentence to be a valid ltalian sentence?
It has to be a valid sentence and it has to be a translation.

126 M. Ranzato



An Alternative View

lllustration of the model during back-translation:

outer-encoder outer-decoder

Inner I inner m Inner I

NagpPt

¢ encoder decoder | : encoder m decoder I

How to constrain the intermediate sentence to be a valid ltalian sentence?

- we could add some language modeling constraints directly on I , but it
would be hard to bprop and would be weak constraint on translation.
- Instead, we constraint the latent space.

127 M. Ranzato



Adding Language Modeling

outer-encoder outer-decoder

H inner - Inner I

¢ encoder | decoder : encoder m decoder I

Since inner decoders are shared between the LM and MT task, it should
constraint the intermediate sentence to be fluent.

128 M. Ranzato



Adding Language Modeling

outer-encoder outer-decoder

H inner - Inner I

¢ encoder | decoder : encoder m decoder I

Since inner decoders are shared between the LM and MT task, it should
constraint the intermediate sentence to be fluent.
But that's not enough:
- translation noise cannot be exactly reproduced (without parallel data).
* latent representation may not be
robust to translation noise
129 M. Ranzato



Adding Language Modeling

outer-encoder outer-decoder

H inner - Inner I

¢ encoder | decoder : encoder m decoder I

Since inner decoders are shared between the LM and MT task, it should
constraint the intermediate sentence to be fluent.

But that's not enough:

- translation noise cannot be exactly reproduced (without parallel data).

latent representation produced by the “other” inner encoder may be
different. * NMT wqgo’t know how to translate.

M. Ranzato



Adding Language Modeling

outer-encoder outer-decoder

H inner - Inner I

¢ encoder | decoder : encoder m decoder I

Since inner decoders are shared between the LM and MT task, it should

constraint the intermediate sentence to be fluent.

But that's not enough:

- translation noise cannot be exactly reproduced (without parallel data).
latent representation produced by the “other” inner encoder may be

different.
WE NEED TO SHARE LATENT REPRESENTATIONS

M. Ranzato



NMT: Sharing Latent Space

outer-encoder outer-decoder

H inner - inner I

‘ encoder | decoder : encoder m decoder I

Sharing achieved via:
1)  shared encoder (and also decoder).

2) joint BPE embedding learning.
Note: first decoder token specifies the language on the target-side.

132 M. Ranzato



lNnstantiations

e Phrase-based Machine Translation
e Neural Machine Translation

. Hybrid: PBSMT + NMT

133 M. Ranzato



PBSMT + NMT

e Train PBSMT

 Use PBSMT to produce data to train NMT in
addition to its own back-translated data.

134 M. Ranzato



Methodology

En Fr

Take monolingual NewsCrawl
datasets from 2007 till 2017 .

135 M. Ranzato



Methodology

En Fr

Test on original WMT test set
(no overlap with training set).

136 M. Ranzato



Datasets

« WMT’14 En-Fr
* 50M sentences in each language for training
* eval on newstest2014

« WMT’'16 En-De
* 50M sentences in each language for training

e eval on newstest?016

137 M. Ranzato



Model en-fr fr-en | en-de de-en

(Artetxe et al., 2018) 15.1 15.6 - -
(Lample et al., 2018) | 15.0 14.3 9.6 13.3
(Yang et al., 2018) 17.0 15.6 10.9 14.6

Prior work

138 M. Ranzato



Model en-fr fr-en | en-de de-en
(Artetxe et al., 2018) 15.1 15.6 - -

(Lample et al., 2018) | 15.0 14.3 9.6 13.3
(Yang et al., 2018) 17.0 15.6 10.9 14.6
NMT (LSTM) 245  23.7 14.7 19.6
NMT (Transformer) 25.1 242 17.2 21.0
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Model en-fr fr-en | en-de de-en
(Artetxe et al., 2018) 15.1 15.6 - -

(Lample et al., 2018) | 15.0 14.3 9.6 13.3
(Yang et al., 2018) 17.0 15.6 10.9 14.6
NMT (LSTM) 24.5  23.7 14.7 19.6
NMT (Transformer) 25.1 242 17.2 21.0
PBSMT (Iter. 0) 16.2 17.5 11.0 15.6
PBSMT (Iter. n) 28.1 27.2 17.9 22.9

Even after iteration O, PBSMT is better than prior work!
PBSMT works better than NMT, on these language pairs.

140
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Model en-fr fr-en | en-de de-en
(Artetxe et al., 2018) 15.1 15.6 - -
(Lample et al., 2018) | 15.0 14.3 9.6 13.3
(Yang et al., 2018) 17.0 15.6 10.9 14.6
NMT (LSTM) 24.5  23.7 14.7 19.6
NMT (Transformer) 25.1 242 17.2 21.0
PBSMT (Iter. 0) 16.2 17.5 11.0 15.6
PBSMT (Iter. n) 28.1 27.2 17.9 22.9
NMT + PBSMT 27.1 263 17.5 22.1
PBSMT + NMT 27.6  27.7 20.2 25.2

141
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28-

18+

PBSMT. WMT'14 En-Fr

prd

X X &
X o o o o

@
e Fr->En
x  En->Fr
o

1 2 3 4 5 6

iteration number
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Source Je réve constamment d’eux, peut-étre pas toutes les nuits mais plusieurs fois par semaine c’est certain.

NMT Epoch | I constantly dream, but not all nights but by several times it 15 certain.
NMT Epoch 3 I continually dream them, perhaps not all but several times per week is certain.
NMT Epoch 45 T constantly dream of them, perhaps nol all mighis but several ttmes a week 1t ’s certam.

PBSMT lter. 0 T dream ol. bul they constantly have all those mghls but several times a week 1s too much. ™
PBSMT lter. 1 T had dreams constantly of them, prohably not all mghts bul several limes a week 1015 large.
PBSMT Iter. 4 I dream constantly of them, probably not all nights but several times a week 1t is certain.

Reference I constantly dream of them, perhaps not every night, but several times a week for surc.

NMT BLEU: 12.3 after epoch 1, 17.5 after epoch 3 and 24.2 after epoch 45.
PBSMT BLEU: 15.4 after iteration O, 23.7 after iteration 1 and 24.7 after iteration 4.
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Source La protéine que nous utilisons dans la glace réagit avec la langue a plIl neutre.

NMT Epoch I The protein that we use 1n the 1ce with the language (o pH.
NMT Epoch 8  The protein we use into the ice responds with language to pH neutral.
NMT Epoch 45  The protein we usc in ice responds with the language from pH to neutral.

PBSMT Iter. 0 The protein that used 1n the ice responds with the language and pH neutral.
PBSMT Iter. I  The protein that we use in the ice responds with the language to pH neutral.
PBSMT Iter. 4 The protein that we usc in the icc reacts with the language to a ncutral pH.

Reference The protein we are using in the ice cream reacts with your tongue at neutral pH.

NMT BLEU: 12.3 after epoch 1, 17.5 after epoch 3 and 24.2 after epoch 45.
PBSMT BLEU: 15.4 after iteration O, 23.7 after iteration 1 and 24.7 after iteration 4.
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Source Sclon Google, les déguisements les plus recherchés sont les zombies, Batman, les pirates ct les sorcicres.

NMT Epoch 1  According to Google, there are more than zombics, Batman, and the pirates.
NMT Epoch §  Google’s most wanted outfits are the zombies, Batman, the pirates and the evil.
NMT Epoch 45 Google said the most wanted outlits are the zombies, Batman, the pirates and the witch.

PBSMT lter. 0  According to Google, tancy dress and most wanted fugitives are the bad guys, Wolverine, the pirates and their
PBSMT Iter. 1  According to Google, the outfits are the most wanted fugitives are zombies, Batman, pirates and witches.
PBSMT Iter. 4  According to Google, the outfits, the most wanted list are zombies, Batman, pirates and witches.

Reference According to Google, the highest searched costumes are zombies, Batman, pirates and witches.

NMT BLEU: 12.3 after epoch 1, 17.5 after epoch 3 and 24.2 after epoch 45.
PBSMT BLEU: 15.4 after iteration O, 23.7 after iteration 1 and 24.7 after iteration 4.
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WMT 14 En-Fr

— superv. NMT
- Superv. PBSMT
= = ynsup. NMT

= ==  Unsup. PBSMT

104 10° 10°

number of parallel training sentences

146
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L ow-Resource Language
Pair: En-Ro

* Similar training set up as in En-Fr and En-De.

* training set: 2.9M monolingual sentences from
NewsCrawl + monolingual data from WMT'16.

* test set: newstest 2016.

RESULTS
En-Ro
Gu et al. 2018 NA
NMT 21.2
PBSMT 21.3
PBSMT+NMT | 25.1

Ro-En
22-9'\they use:
194 e dictionary
* 6K parallel sentences
23.0 * parallel data in other languages
23.9

M. Ranzato



Distant Language Pair: En-Ru

* Similar training set up as in En-Fr and En-De.

* training set: 50M monolingual sentences from
NewsCrawl.

* test set: newstest 2016.

RESULTS
En-Ru|Ru-En
NMT 8.0 9.0
PBSMT 13.4 | 16.6

PBSMT+NMT | 13.8 | 16.6
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Distant Language Pair: En-Ru

Russian — English

Source FlsmeHenns 1peaycMarpuBai1 COXPAHCHRE JIblOThl Hd 1POE3 B 00LIECTBEPHHOM LACCAZKUPCKOM TPAHCIODIC,
Hypothesis  The changes involve keeping the benelits of parking in a public passenger tansportation.

Reference  These changes make allowances for the preservation of discounted travel on public transportation.

Source [ecrs n3 10 pecnyOinuKannes roBopsr, 410 OHM COacHsbl ¢ TpaMiioM 10 HOBOAY HMMUALPALMH.

Hypothesis  Six in 10 Republicans say that they agree with Trump regarding immigration.

Reference  Six in 10 Republicans say they agree with Trump on immigration.

Source Metcash ubrraerces sammrnrs cson Marasuibl [GA or sHarueka Aldi B FOxxuoit Ascrpaaumn n Sauaanoil Ascrpainn .
Hypothesis Metcash 1s trying to protect their shops IGA from the onslaught of Aldi in South Australia and Western Australia.
Reference  Metcash 1s trying to protect its IGA stores from an Aldi onslaught in South Australia and Western Australia.

S”llll:t: R HHUX (T IHA I)H()()'I'H.K)'l' ‘l("l’hll)(‘ [AXYI'HHN 1'|"\',. [CHTOR U4 (C"TOUITMYHRKIX K().'l.'l(‘_Al)KQ":“I M H}'f‘i()l{

Hypothesis  Others today employs four hundreds of students from clite colleges and universities.

Reference  Four hundred students from colleges and universities in the capital are working inside of it today.
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Distant & Low-Resource

L anguage Pair: En-Ur

asd ) Sign in BE

NEWS | o)

Askal  gdig il gdis @8 Gatle B8 oS bl okash Jolaxde

Yo oy I s sy (Slush ool Ls 12018 (a0

S Al /90y o 2 S
o

https://www.bbc.com/urdu/pakistan-44867259
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https://www.bbc.com/urdu/pakistan-44867259

Distant & Low-Resource
. anguage Pair: En-Ur

* Training on 5.5 monolingual sentences (Jawaid et
al. 2014) from news Sources.

* Jeston LDC2010T23 (news related).

RESULTS

Ur-En

PBSMT supervised 9.8

: they use 800K parallel sentences (out
PBSMT unsuperwsed 12.3 of domain) from Tiedemann (2012).

151 M. Ranzato



PBSMT Ablation: Initialization

WMT' 14 Fr-En
25 -
20 -
-
-
m 151
— 10.75
_ — 27.86 P@1
10 — 41557 P@1
— (1.26 P@1

itellf. 0 ite'r. 1 ite'r. 2 ite'r. 3 ite'r. 4
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PBSMT Ablation: Lang. Modeling

WMT 14 Fr-En

22.5
20.0
17.5
m— 50k
15.0 e 500k
12.5- — 50M
itef.O itef.l itef.z itef.3
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PBSMT Ablation: Back-Translation

WMT’14 Fr-En
24 -
22 -
o
A
m
s 300k
161 — ] 0M
iter. O iter. 1 iter. 2 iter. 3
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NMT: Aplation

en — 1fr fr — en

Embedding Initialization

Concat + fastText (BPE) [default] 25.1 24.2
Concat + fastText (Words) 21.0 20.9
fastText + Align (BPE) 22.0 21.3
fastText + Align (Words) 18.5 18.4
Random 1nitialization 10.5 10.5
Loss function

without £'™ 0.0 0.0
without £°*~ 0.0 0.0
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UnsupMT Summary

e 3 principles of unsupMT
e |nitialization, I.e. token level translation
* |language modeling
e back-translation

e PBSMT & NMT version

e Somewhat works also for distant and low resource
languages.

156 M. Ranzato



UnsupMT Considerations

* GGeneral problem: unsupervised learning of the
mapping between two domains.

* This is a task where a machine is probably better than
humans, as it can easily leverage big data to learn
patterns, dependencies and correspondences.

* Jrivial extensions to semi-supervised setting.
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Questions?
Bonpochbi?
¢, Preguntas?
Domande?
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Outline

PART 0 [lecture 1]
e Natural Language Processing & Deep Learning
« Background refresher
Part 1 [lecture 1]
 Unsupervised Word Translation
Part 2 [lecture 2]
e Unsupervised Sentence Translation
Part 3 [lecture 3]
- Uncertainty

e Sequence-Level Prediction in Machine Translation

159
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Myle Ott Michael Auli David Grangier

Analyzing Uncertainty in Neural Machine Translation

Myle Ott, Michael Auli, David Grangier, Marc'Aurelio Ranzato
ICML 2018

https://arxiv.org/abs/1803.00047

credit to Myle for slides.



This work

Goal: Investigate the effects of uncertainty in
NMT model fitting and search

161
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This work

W data distribution m model distribution 1 ®mmodel distribution 2

|
0.8
Rv;
S 0.6
o
X 0.4

% 0.2 I
0 I e

thank you thanks thank you  no, thank danke
very much you
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This work

W data distribution m model distribution 1 ®mmodel distribution 2

4 h . ~N
08 Inherent uncertainty

= / in the translation task
s 0.6 \_ J
O &

< 0.4 /

0.2 I I \

thank you thanks thank you  no, thank danke
very much you
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This work

W data distribution m model distribution 1 ®mmodel distribution 2

:
08 . . .
© [Trammg data may contain nmse]
C 0.6
O
x 04
* 02 I
0 I -

thank you thanks thank you  no, thank danke

very much ou
Y Y 164
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This work

W data distribution ™ model distribution 1T ®m model distribution 2

4 ™
0.8 Model 1 has very
2 06 \ ittle uncertainty
O
x 04 I
S
0.2
. I III l_l l lE

thank you thanks thank you  no, thank danke
very much you
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This work

W data distribution ® model distribution 1 ®mmodel distribution 2

1 4 | )
s NMT models can’t assign O
O probability mass to any outputs
5 06 . J
O
x 04 I
S
0.2
. I III l_l ‘l alE

thank you thanks thank you  no, thank danke
very much you
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This work

W data distribution ™ model distribution 1T ®m model distribution 2

1 4 D
Model 2 has
0.8 . .
E considerable uncertainty
S 0.6 \, J
O
x 04 I \
&
0.2 ' '
. I III i I A -_=

thank you thanks thank you  no, thank danke

very much ou
Yy Y 167
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Goal: Investigate the effects of uncertainty in
NMT model fitting and search

Do NMT models capture uncertainty, and how is this
uncertainty represented in the model’s output

distribution?
« How does uncertainty affect search?

e How closely does the model distribution match the data
distribution?

« How do we answer these questions with (typically) only
a single reference translation per source sentence? 168
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Experimental setup

Convolutional sequence-to-sequence models®
(Gehring et al., 2017)

Evaluation: compare translations with BLEU (papineni
et al,, 2002)

« Modified n-gram precision metric, values from O (worst)
to 100 (best)

Datasets: WMT 14 English-French and English-
German

* Mixture of news, parliamentary and web crawl data
169

* Results hold for other tested architectures too, e.g.,, LSTM
M. Ranzato



Do NMT models capture uncertainty?

Question: How much uncertainty is there in the
model’s output distribution?

Experiment: How many independent samples does

it take to cover most of the sequence-level
brobability mass?

170
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Do NMT models capture uncertainty?

Model’s output

g 0% distribution is highly
&) | .
a V-0 uncertain!
3 0.15 -
‘_&; Even after 10K samples
S 0.10 - )
§ 0 05 - we cover only 25% of
= sampling sequence-level
0.00 J 1 ol
’ 100 10000 probability mass.
Number of hypotheses considered
(WMT14 En-Fr) What about beam
search? 171
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Do NMT models capture uncertainty?

.............................

- sampling
« reference

T 1
1 100 1000

Number of hypotheses considered
(WMT14 En-Fr)

Beam search is very efficient!

The reference score (<+<)
is lower than beam hypothese:

What is t

these tra
0

ne quality (BLEU) of

nslations?
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o (o))
o

Sentence BLEU
w

Uncertainty & Search

Beam search produces
o accurate translations
0 - Sampling produces

increasingly likely
hypotheses, but these get
1 100 10000 Worse BLEU after ~200

Number of hypotheses considered
(WMT14 En-Fr)

e peam 200
w——— sampling

N
o
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Hint: Scatter Plot of Samples

- 5 Y T R _
.‘-?...:.... ...................... T T LR T S T LT EE -
a ' ®
o
S _3boc PRt . i ]
(@)
o
. Sent #115
.. 3 : 5 3 Sent #410 |
et |+ + Sent #2061
T : 1 ‘ 1 Sent #2375
._6 | | | | | |

0 10 20 30 40 50 60 70 80
BLEU M. Ranzato



logprob

Hmt Scatter Plot of Samples

« + Sent #11
« Sent #41
« Sent #206
« Sent #2375

Source #2375 (purple):

Should this election be decided two
months after we stopped voting?

Target #2375 (purple):

Cette élection devrait-elle étre
décidé deux mois apres que le vote est terminé?

70

S\High—BLEU sample:

Cette élection devrait-elle étre
décidée deux mois apres l'arrét du scrutin?

Low-BLEU sample:

Ce choix devrait-il étre décidé deux
mois apres la fin du vote?

175 M. Ranzato



logprob

0
R
'5.,'.. 7:.. I f':-i ",
_1 . .......® - ‘...is )
osond
R
‘ l.ff,‘j"'s
_2 ....... ‘.... ; g.:.b‘....i ...............................................................................
.o... .'r.o. ‘...
et
T N
R ) ST . 1 XN e N P W
\:8.;: ;-/
..'. .z.
'f.: .o';. : ' . : . :
4l S S N S S 3
s z 5 z 5 ; z
o % ' ' : . . Sent #11
S I S A e A \J* °© Sent#410\ ||
* - 1 f 1 I\ Sent #206
? *\* Sent #2375\
-6

BLEU Is just a poor metric.

Hint: Scatter Plot of Samples

Source #2375 (purple):

Should this election be decided two
months after we stopped voting?

Target #2375 (purple):

Cette élection devrait-elle étre
décidé deux mois apres que le vote est terminé?

0 . 110 210 310 410 SiO GB 7IO S\High_BLEU Sample:

Cette élection devrait-elle étre
décidée deux mois apres l'arrét du scrutin?

Low-BLEU sample:

Ce choix devrait-il étre décidé deux
mois apres la fin du vote?
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logprob

HiNt:

' o. é.. .‘{‘o‘ .® .f. !
. : :o! é...o %, ."'mgz.k.) [ }8'“
:.9.‘ ; .-3 ; '.: ..
s . . P
b SN
Y, o é é
i_og.;.. ............. .............. .............. ............. .............. .............. ..............
-« Sent #115
e e TR SR - Sent #410 |/
* - -+ \ Sent #2061
-+ + Sent #2375
I | | | | ] N |
0 10 20 30 40 50 60 0 80
BLEU

Scatter Plot of Samples

Source #115 (red):

The first nine episodes of Sheriff [unk]'s Wild
West will be available from November 24 on the
site [unk] or via its application for mobile phones
and tablets.

Target #115 (red):

Les neuf premiers gpisodes de [unk] [unk] s
Wild West seront disponibles a partir du 24
novembre sur le site [unk] ou via son
application pour télephones et tablettes.

High-logp low BLEU sample:

The first nine episodes of Sheriff [unk] s Wild
West will be available from November 24 on
the site [unk] or via its application for mobile
phones and tablets.
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Hint: Scatter Plot of Samples

B e eesgfagideientels o _
gl ARERTELR L Gource #115 (red).
AT R O LI A LA 5 The first nine episodes of Sheriff [unk]'s Wild
West will be available from November 24 on the

-2
) site [unk] or via its application for mobile phones
5 -3 | | _ | | | and tablets.
_4r3, ........... .............. .............. ............. .............. .............. ............. . Target #.I 15 (I’ed)
g | : : « « Sent #115 _ , .
Y I OO A N — — - . sent #a10 || Les neuf premiers gpisodes de [unk] [unk] s
a | Se;: Zgj; Wild West seront disponibles a partir du 24
6 ; ; ; i | N\ novembre sur le site [unk] ou via son
0 10 20 30 40 50 60 0 80 . . P
BLEU application pour télephones et tablettes.

: High-logp low BLEU sample:
Model generates copies of 1, %« nine episodes of Sheriff [unk] s Wild

source sentence! West will be available from November 24 on
Why does beam find this? the site [unk] or via its application for mobile

phones and tablets.
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Uncertainty & Search

Source: The first nine episodes of Sheriff Callie ’'s Wild
West will be available (..)

Reference: Les neuf premiers épisodes de shérif Callie’ s Wild
West seront disponibles (..)

Hypothesis: The first nine episodes of Sheriff Callie ’s Wild
West will be available (..)
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Uncertainty & Search

Source: The first nine episodes of Sheriff Callie ’'s Wild
West will be available (..)

Reference: Les neuf premiers épisodes de shérif Callie’ s Wild

West seront disponibles (..)

log probs: -4.53 -0.02 -0.28 -0.11 -0.01 -0.007T -0.004 -0.002 ...
dypothesis: The first nine episodes of Sheriff Callie "s Wild

West will be available (..)
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Uncertainty & Search

Copies* are over-represented in the output of beam
search

« Copies make up 2.0% of the WMT14 En-Fr training set

« Among beam hypotheses, copies account for:

Beam=1: 2.6% Beam=5: 2.9% Beam=20: 3.5%

181
*a copy is a translation that shares

>= 50% of its unigrams with the source
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Uncertainty & Search

Copies* are over-represented in the output of beam
search

[ A simple idea: filter copies during search ]

AT T INJSI Ib o s CAT 1 1 IIJ r/V\—I I\.—J\'u, \.—Vr/l\.—J CAC AT TG 1T\ e

Beam=1: 2.6% Beam=5: 2.9% Beam=20: 3.5%

182
*a copy is a translation that shares

>= 50% of its unigrams with the source

M. Ranzato



Uncertainty & Search

27
25 -
-
E,-' 23 | = baseline
(490)]
21 -
19 T u T T 1
1 5 10 20 50 100 200
Beam width (K)
<WMT17 Eﬂ-DG) 183
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Uncertainty & Search

27
25 - — =
- - haseline
w -
3 231 — - copy filtered
21 4
19 T u T T u
1 5 10 20 50 100 200
Beam width (K)
<WMT17 Eﬂ-D@) 184
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Uncertainty & Search

- === baseline
l_‘,-' 23 1 = = copy filtered
= = news subset

T T T T

1 5 10 20 50 100 200
Beam width (K)

(WMT17 En-De) s
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How is uncertainty represented in the model
distribution?

.. and how closely does the model distribution match
the data distribution?

Challenging because:

« We typically observe only a single sample from the data
distribution for each source sentence (i.e., one reference
translation)

e The model and data distributions are intractable to enumerate

We instead introduce necessary conditions for matching

M. Ranzato



Analyzing the model distribution

What are the necessary conditions for the model
distribution to match the data distribution:

o ..atthe token level?
o ..atthe sequence level?

 ..when considering multiple reference translations?

187
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Analyzing the model distribution—Token Level

9o, | W reference Histogram of unigram
E ° | mmm beams .
s s sampling frequencies
g 11% |
% 10% -
S

9% -

10 20 30 40 50 60 70 80 90 100
Frequency percentile in train

<prare words common words g >

(WMT14 En-Fr)
188
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Analyzing the model distribution—Token Level

12%

Observed frequency

B reference

BN beam5
BN sampling

10 20§ 30 40 50 60 70 80 90 100
Frequency percentile in train

<prare words common words g >

(WMT14 En-Fr)

Histogram of unigram
frequencies

Beam under-estimates the
rarest words, although sampling
IS not as bad
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Analyzing the model distribution—Token Level

12%

11%

Observed frequency

9% -

B reference

BN beam5
BN sampling

10% -

10 20 30 40 50 60 70 80 9
Frequency percentile in train

<prare words common words g >

(WMT14 En-Fr)

Histogram of unigram
frequencies

Beam under-estimates the
rarest words, although sampling
IS not as bad

Beam over-estimates frequent
words.

We should expect this! o0
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Analyzing the model distribution—Token Level

12%

11%

Observed frequency

9% -

B reference

BN beam5
B sampling

10% -

10 20 30 40 50 60 70 80 90 100
Frequency percentile in train

<prare words common words g >

(WMT14 En-Fr)

Histogram of unigram
frequencies

Beam under-estimates the
rarest words, although sampling
IS not as bad

Beam over-estimates frequent
words.

We should expect this! o

Sampling mostly matches the
reference data distribution

M. Ranzato



Analyzing the model distribution—Sequence Level

Synthetic ex

heriment:

e Retrain moc

el on news subset of WMT, which does

not contain copies

o Artificially introduce copies in the training data with
probability ppoise

» Measure rate of copies among sampled hypotheses

192
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Analyzing the model distribution—Sequence Level

1.0
0.1 -
o) 0.01 -
©
0.001
— perfect match
0.0001 —e— exact copy
0.001 0.01 0.1 0.5

Pnoise 193
(WMT17 En-De)
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Analyzing the model distribution—Sequence Level

1.0
0.1 ~
Model under-estimates
g 001 copies at a sequence
T
level
0.001
perfect match
0.0001 exact copy
0.001 0.01 0.1 0.5
Pnoise 194

(WMT17 En-De)
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Analyzing the model distribution—Sequence Level

1.0

0.1 -

0.01 -

rate

0.001
—— perfect match

-—&— eXact co
0.0001 by

—e— partial (incl. exact) copy

0.001 0.01 0.1

Pnoise

(WMT17 En-De)

0.5

Partial copies* do not
appear In training, yet...

The model smears
probability mass in
hypothesis space

* A partial copy has a unigram
overlap of >= 50% with the

source
195
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Analyzing the model distribution—with Mult. References

Collect 10 additional reference translations from distinct
human translators

« 500 sentences (En-Fr) and 500 sentences (En-De)
« 10K sentences total

 Available at: github.com/facebookresearch/analyzing-uncertainty-nmt
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Sentence BLEU

44.5

41.4
I 38.2
]

single reference

B inter-human
B beam (K=5)
Bl sampling (K=200)

(WMT14 En-Fr)
197
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Sentence BLEU

oracle reference: BLEU w.r.t. best matching reference

Source: Thanks a lot!
Best hypothesis: Merci!

1uman

(K=5)
Ref1: Merci beaucoup! ing (K=200)
Ref2: Merci beaucoup.
Ref3: Merci!

Ref4: .. .. n-Fr)

198
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Sentence BLEU

oracle reference: BLEU w.r.t. best matching reference

/1702
64.1

B inter-human
B beam (K=5)

o Bl sampling (K=200)

41.4
I 38.2
]

single reference  oracle reference (WMT14 En-Fr)
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Sentence BLEU

oracle reference: BLEU w.r.t. best matching reference

The best beam hypothesis
71 702 — is very close to a reference

64.1
B inter-human
B beam (K=5)
inc Bl sampling (K=200)
41.4
I 38.2
]

single reference  oracle reference (WMT14 En-Fr)
200
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Sentence BLEU

average oracle:
average oracle reference BLEU over top-K hypotheses

Source: Thanks a lot!
Hypothesis #1: Mercl!
Hypothesis #2: Merci merci!

1uman

(K=5)

ing (K=200)
Ref1: Merci beaucoup!
Ref2: Merci beaucoup.

* Ref3: Merci! n-Fr)
Ref4: .... 201
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Sentence BLEU

average oracle:
average oracle reference BLEU over top-K hypotheses

/1702
641 65.7

B inter-human
B beam (K=5)

s Bl sampling (K=200)

41.4
I 265 39.1
[ L
single reference  oracle reference average oracle (WI\/lT1 A En—Fr)
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Sentence BLEU

Most beam hypotheses ~ Most sampled hypotheses
are close to a reference are far from a reference

44.5

41.4
I 382

single reference

/1702

B inter-human

B beam (K=5)

Bl sampling (K=200)
391

oracle reference average oracle (WI\/lT1 A En—Fr)
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# refs covered: number of distinct references
(out of 10) matched to at least one hypothesis

Sampling covers more
hypotheses (is more diverse)
than beam search

# refs covered

7.4

1.9

Wl 7

NN\

B beam K=5
7/ beam K=200
B sampling K=200

M. Ranzato



Conclusion

 NMT models capture uncertainty in their output distributions

e Beam search is efficient and effective, but prefers frequent words

« Degradation with large beams is mostly due to copying, but this can
be mitigated by filtering the training set

» Models are well calibrated at the token level, but smear probability
mass at the sequence level

» Smearing may be responsible for lack of diversity in beam search
outputs

Dataset link: github.com/facebookresearch/analyzing-uncertainty-nmt
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http://github.com/facebookresearch/analyzing-uncertainty-nmt

Questions?
Bonpochbl!?
¢, Preguntas?
Domande?

206
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Outline

PART 0 [lecture 1]
e Natural Language Processing & Deep Learning
* Neural Machine Translation
Part 1 [lecture 1]
 Unsupervised Word Translation
Part 2 [lecture 2]
e Unsupervised Sentence Translation
Part 3 [lecture 3]
e Uncertainty

- Sequence-Level Prediction in Machine Translation
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Sergey Edunov Myle Ott Michael Auli

Classical Structured Prediction Losses for Sequence to Sequence Learning

Sergey Edunov, Myle Ott, Michael Auli, Dz%lg/id Grangier, Marc'Aurelio Ranzato
NAACL 2018

https://arxiv.org/abs/1711.04956



https://arxiv.org/abs/1711.04956

Problems

* Model Is asked to predict a single token at training time,
but the whole sequence at test time.

* EXposure bias: training and testing are inconsistent
because model has never observed its own predictions at
training time.

* At training time, we optimize for a different loss.

e Evaluation criterion is not differentiable.

Sequence level training with RNNs, Ranzato et al. ICLR 2016 M. Ranzato



Selection of Recent Literature

* RL-inspired methods
« MIXER Ranzato et al. ICLR 2016
o Actor-Critic Bahdanau et al. ICLR 2017
* Using beam search at training time:

¢ BSO Wiseman et al. ACL 2016

e Distillation based «imetal emnLp 2016

210 M. Ranzato



Question

How do classical structure prediction losses compare
against these recent methods?

Classical losses were often applied to log-linear models
and/or other problems than MT.

Bottou et al. “Global training of document processing systems with graph transformer networks” CVPR 1997
Collins “Discriminative training methods for HMIMs’> EMNLP 2002
Taskar et al. “Max-margin Markov networks> NIPS 2003

Tsochantaridis et al. “Large margin methods for structured and interdependent output variables” JMLR 2005
Och “Minimum error rate training in statistical machine translation” ACL 2003
Smith and Eisner “Minimum risk annealing for training log-linear models” ACL 2006

Gimpel and Smith “Softmax-margin CRFs: training log-linear models with cost functions’ ACL 2010

211 M. Ranzato



Question

How do classical structure prediction losses compare
against these recent methods?

Classical losses were often applied to log-linear models
and/or other problems than MT.

Can the Energy-Based Model framework help unitying these
different approaches?

LeCun et al. “A tutorial on energy-based learning’ MIT Press 2006 M. Ranzato



Energy-Based Learning

During training
Energy

o space of possible
target prediction predictions

Some losses have explicit negative term,
others replace it with constraints in the
__ loss orin the architecture.
(z,y~)

OF
(z,yt) OO

oL _oF
00 06

LeCun et al. “A tutorial on energy-based learning’ MIT Press 2006 M. Ranzato



Energy-Based Learning

After training

Energy

o space of possible
target=prediction predictions

LeCun et al. “A tutorial on energy-based learning’ MIT Press 2006 M. Ranzato



Challenges

Energy

space of possible
target prediction predictions

Key gquestions it we want to extend EBMs to MT:
* how to search for most likely output? Enumeration & exact search are intractable.

215 M. Ranzato



Challenges

EXAMPLE
Source: The night before would be practically sleepless .

Target #1: La nuit qui précede pourrait s’avérer quasiment blanche .
Target #2: Il ne dormait pratiquement pas la nuit précédente .

Target #3: La nuit précédente allait étre pratiqguement sans sommeil .
Target #4: La nuit précédente , on n’a presque pas dormi .

Target #5: La veille , presque personne ne connaitra le sommeil .

Key gquestions it we want to extend EBMs to MT:
* how to search for most likely output? Enumeration & exact search are intractable.
e how to deal with uncertainty”? What if we only observe one minimum among many?

Ott et al. “Analyzing uncertainty in NMT?’ arXiv:1803.00047 2018 M. Ranzato



Challenges

EXAMPLE
Source: nice.

Target #1: chouette .
Target #2: belle .
Target #3: beau .

Key gquestions it we want to extend EBMs to MT:
* how to search for most likely output? Enumeration & exact search are intractable.

e how to deal with uncertainty”? What it we only observe one minimum among many?

Ott et al. “Analyzing uncertainty in NMT?’ arXiv:1803.00047 2018 M. Ranzato



Challenges

Source length (words)
0 20 40 60 20 100 120 140 150 180

+ reference
* beam5

Score

-10

Key gquestions if we want to extend EBMs to MT:

* how to search for most likely output”? Enumeration & exact search are intractable.

* how to deal with uncertainty”? What it we only observe one minimum among many?

* what if target is not reachable? E.g.: Not reachable = no hyp. in the beam is close to

the reference.

Ott et al. “Analyzing uncertainty in NMT” ICML 2018 M. Ranzato



Notation

= (z1,...,Zm) input sentence

219 M. Ranzato



X

t

Notation

Input sentence

farget sentence
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X

t

u

Notation

INnput sentence
farget sentence

hypothesis generated by the model
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Notation

X INnput sentence
t farget sentence
u hypothesis generated by the model

u* = arg ng](a)cost(u,t) oracle hypothesis
uci (X
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Notation

X INnput sentence
t farget sentence

u hypothesis generated by the model

X

u oracle hypothesis

u=arg min —logp(ulx) most likely
ueU(x) hypothesis

223 M. Ranzato



Baseline: loken Level NLL

[:TQkNLL — Z logp(tl‘tla ey bi—1, X)
=1

for one particular training example and omitting
dependence on model parameters.

224 M. Ranzato



Sequence Level NLL

Energy

L3eqNLL = — logp(u’[x) +log Y = p(ulx)
ucl (x)

The sequence log-probability is simply the sum of the
token-level log-probabilities.

225 M. Ranzato



Sequence Level NLL

L3eqNLL = — logp(u®[x) +log > p(ulx)

decrease energy ucl (x)
of reachable hyp.

, normalize over
with lowest cost

reachable set

The sequence log-probability is simply the sum of the
token-level log-probabilities.

Two key differences: choice of target and hypothesis set.

Homework: compute gradients of loss w.r.t. inputs to token level softmaxes.

226
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Sequence Level NLL

L3eqNLL = — logp(u*[x) +log > p(ulx)
ucl (x)

Energy

l gradients

| T f
* hypothesis space

Z/{(X) set of hypotheses reachable
by the model
227
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Example

Source:
Wir mussen unsere Einwanderungspolitik in Ordnung bringen.

Target
We have to fix our immigration policy.

Beam:

BLEU Model score

/5.0 -0.23 We need to fix our immigration policy.
36.9 -0.36 We need to fix our policy policy.

66.1 -0.42 We have to fix our policy policy.

66.1 -0.44 We've got to fix our immigration policy.

228

M. Ranzato



Example

Source:
Wir mussen unsere Einwanderungspolitik in Ordnung bringen.

Target
We have to fix our immigration policy.

Beam:
BLEU Model score
/5.0 -0.23 We need to fix our immigration policy.

36.9 -0.36 * We need to fix our policy policy.
66.1 -0.42 y We have to fix our policy policy.

66.1 -0.44 \ We've got to fix our immigration policy.

229
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Observations

Important to use oracle hypothesis as surrogate target
as opposed to golden target. Otherwise, the model
learns to assign very bad scores to its own hypotheses
but Is not trained to reach the target.

Evaluation metric only used for oracle selection of target.
Several ways to generate U(x). beam, sampling, ...

Similar to token level NLL but normalizing over (subset
of) hypotheses. Hypothesis score: average token level
log-probability.

230 M. Ranzato



EXpected RIsK

p(ufx)
LRisk = Z cost(t, u)
G Y S P

* The cost is the evaluation metric; e.g.: 100-BLEU.

* REINFORCE [1] is a special case of this (a single
sample Monte Carlo estimate of the expectation
over the whole hypothesis space).

Homework: compute gradients of loss w.r.t. inputs to token level softmaxes.

[1] Sequence level training with RNNs, Ranzato et al. ICLR 2016 M. Ranzato



Example

Source:
Wir mussen unsere Einwanderungspolitik in Ordnung bringen.

Target
We have to fix our immigration policy.

Beam:

BLEU Model score

/5.0 -0.23 We need to fix our immigration policy.
36.9 -0.36 v  We need to fix our policy policy.

66.1 -0.42 We have to fix our policy policy.

66.1 -0.44 We've got to fix our immigration policy.

(expected BLEU=42)

232 M. Ranzato



Example

Energy

gradients

* hypothesis space
Z/{(X) set of hypotheses reachable

by the model
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Max-Margin

£MaXMargin = max|0,m — (E(a) — E(u”))]

* Energy: (negative) un-normalized score (or log-odds).
* Margin: m = cost(t, 1) — cost(t,u™)

* The cost is our evaluation metric; e.g.: 100-BLEU.

* |Increase score of oracle hypothesis, while decreasing
score of most likely hypothesis.

Homework: compute gradients of loss w.r.t. inputs to token level softmaxes.
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Max-Margin

Source:
Wir mussen unsere Einwanderungspolitik in Ordnung bringen.

Target
We have to fix our immigration policy.

Beam:

BLEU Model scor

66.1 -0.20 V We have to fix our policy policy.

/5.0 -0.23 We need to fix our immigration policy.
36.9 -0.36 We need to fix our policy policy.

66.1 -0.44 We've got to fix our immigration policy.

235
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Max-Margin

Energy

gradients

1 hypothesis space
h habl
Z/{(X) set of hypotheses reachable

by the model
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Check out the paper for more examples
of sequence level training losses!

237 M. Ranzato



Practical l1ps

Start from a model pre-trained at the token level. Training with
search is excruciatingly slow...

Even better it pre-trained model had label smoothing.

Accuracy VS speed trade-off: oftfline/online generation of
hypotheses.

Cost rescaling.

Mix token level NLL loss with sequence level loss to improve
robustness.

Need to regularize more.

238
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Results on IWSLT'14 De-En

TokNLL

26.4

28.5

Phrase-based NMT
(Huana et al. 2017)

239

24.0

29.2
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Results on IWSLT'14 De-En

TokNLL

24.0

26.4

28.5

29.2

our TokNLL

31.7

SeqNLL

32.7

Risk

32.9

Max-Margin

240
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Observations

e Seqguence level training does improve evaluation metric
(both on training and) on test set.

e There I1s not so much difference between the different
variants of losses. Risk is just slightly better.

* |n our iImplementation and using the same computational
resources, sequence level training is 26x slower per update
using online beam generation of 5 hypotheses.

241 M. Ranzato



Observations

e Seqguence level training does improve evaluation metric
(both on training and) on test set.

e There I1s not so much difference between the different
variants of losses. Risk is just slightly better.

* |n our iImplementation and using the same computational
resources, sequence level training is 26x slower per update
using online beam generation of 5 hypotheses.

e Hard comparison since each paper has a different baseline!

242 M. Ranzato



Fair Comparison to BSO

TokNLL

(Wiseman et al. 2016) 24.0
BSO
(Wiseman et al. 2016) 20.4
Our re-implementation of their TOKNLL 23 Q
Risk on top of the above TokNLL 6.7

243 M. Ranzato



Fair Comparison to BSO

TokNLL

(Wiseman et al. 2016) 24.0
BSO
(Wiseman et al. 2016) 20.4
Our re-implementation of their TOKNLL 23 Q
Risk on top of the above TokNLL 6.7

These methods fare comparably once the baseline is the same...
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40 |

Diminishing Returns

| —— TokNLL

- == SeqL

mixer actor-critic BSO Risk IWSLT14 De-En Risk WMT14 En-Fr
methods

On WMT’14 En-Fr, TokNLL gets 40.6 while Risk gets 41.0
The stronger the baseline, the less to be gained.
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Large Models in MT

by
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Beam search is very effective; only 20% of the tokens
with probability < 0.7 (despite exposure bias)!



Large Models in MT
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Very large NMT models make almost deterministic transitions.
No much to be gained by seqguence level training.



Conclusion

Sequence level training does improve, but with
diminishing returns. Ilt's computationally very
expensive.

It model has little uncertainty (because of the task and
because of the model being well (over)fitted), then
sequence level training does not help much.

The particular method to train at the sequence level
does not really matter.

Sequence level training is more prone to overfitting.
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cBMs & M T

* Nice unitying framework.

* Different losses apply different weights to the “pull-up’
and “pull-down” gradients.

* Two key differences two usual EBM learning:

* restrict set of hypotheses to those that are
reachable, and

* replace actual target by oracle hypothesis.
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Questions?
Bonpochbi?
¢, Preguntas?
Domande?
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THANK YOU

ranzato@fb.com
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