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• Uncertainty in Machine Translation 
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Natural Language Processing

• Language is the most natural and efficient way that people 
use to communicate.  

• A.I. agents must conceivably communicate with humans to 
perform their tasks efficiently. 

• A.I. agents need to understand language (NLU). 

• A.I. agents need to generate natural language (NLG).
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Challenges: NLU
I saw a man on a hill with a telescope. 
 • There’s a man on a hill, and I’m watching him with my telescope. 
 • There’s a man on a hill, who I’m seeing, and he has a telescope. 
 • There’s a man, and he’s on a hill that also has a telescope on it. 
 • I’m on a hill, and I saw a man using a telescope. 
 • There’s a man on a hill, and I’m sawing him with a telescope. 

Prostitutes appeal to Pope. 
 • Prostitutes have asked the Pope for help. 
 • The Pope finds prostitutes appealing. 

Language is ambiguous. Its meaning is context dependent, 
and it may depend on common knowledge of the world. 
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Challenges: NLG
A: How are you? 
B: I don’t know. 
A: Where are you going? 
B: I don’t know. 
A: What do you think about Deep Learning 
B: I don’t know. 

Long-range dependencies, grounding, large search space… 

How are the startup is a lot of the startup is a lot of the startup is a lot of the 
startup is a lot of the … 

https://cs.stanford.edu/people/karpathy/recurrentjs/
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NLP Today
• No model really “understands the meaning”. 

• Statistical models leverage vast amounts of data to 
capture regularities which are sufficient to do well at 
several non-trivial tasks, such as: 

• Search / MT / dialogue systems in restricted domains / 
Classification of documents… 

• Deep Learning: enables learning of features in an 
end-to-end framework, leveraging big datasets.
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NLP Tasks: Examples

Fixed Length

Variable Length

Variable LengthFixed Length
output

input
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NLP Tasks: Examples

Easy: input and output have fixed length.

Fixed Length

Variable Length

Variable LengthFixed Length
output

input

BoW text 
classification
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NLP Tasks: Examples

Input is a sequence but output is fixed length.

Fixed Length

Variable Length

Variable LengthFixed Length
output

input

BoW text 
classification

language 
modeling 
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NLP Tasks: Examples

The model has to generate a variable 
length sequence at the output.

Fixed Length

Variable Length

Variable LengthFixed Length
output

input

BoW text 
classification

language 
modeling 

Image 
Captioning
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NLP Tasks: Examples

The model has to transduce a variable length 
sequence into another variable length sequence.

Fixed Length

Variable Length

Variable LengthFixed Length
output

input

BoW text 
classification

language 
modeling 

Image 
Captioning

MT

11 M. Ranzato



Fixed Length

Variable Length

Variable LengthFixed Length
output

input

BoW text 
classification

language 
modeling 

Image 
Captioning

MT

NLP Tasks: Examples

The focus of these lectures will be on Machine Translation: 
• good use case 
• important practical applications 
• metric not too bad…
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NLP & Deep Learning
• Language is symbolic, structured and compositional. 

• Deep learning is good at learning data dependent 
representations, and it has a good inductive bias for 
learning from compositional distributions. 

• In order to apply standard deep learning methods to NLP, 
we need to first map discrete symbols to a continuous 
space: word embeddings.
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Outline
• PART 0  [lecture 1] 

• Natural Language Processing & Deep Learning 

• Background refresher

• Part 1  [lecture 1] 
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Quick Refresh on the Basics

• Word Embeddings

• Language Modeling 

• Machine Translation
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Learning Word Representations

• Learn word representations from raw text (without supervision). 

• word2vec review; for more gentle background visit:        

• Practical applications: 

• Text classification 

• Ranking (e.g., Google search, Facebook feeds ranking) 

• Machine translation 

• Chatbot

http://www.cs.toronto.edu/~ranzato/files/ranzato_deeplearn17_lec2_nlp.pdf

16 M. Ranzato

http://www.cs.toronto.edu/~ranzato/files/ranzato_deeplearn17_lec2_nlp.pdf


Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Example  
doc1: the cat is furry 
doc2: dogs are furry

doc1 doc2
are 0 1
cat 1 0

dogs 0 1
furry 1 1

is 1 0
the 1 0
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Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j
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Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each column of V , is a representation of a document in the corpus. 

is

T

Each column is a D dimensional vector. We can use it to compare & retrieve documents.
19



Latent Semantic Analysis

Deerwester et al. “Indxing by Latent Semantic Analysis” JASIS 1990

term-document matrix
xi,j (normalized) number of times word i appears in document j

Each row of U, is a representation of a word in the dictionary. 
Each row of U, is a vectorial representation of a word, a.k.a. embedding.
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Word Embeddings
• Convert words (symbols) into a D dimensional 

vector, where D is a hyper-parameter. 

• Once embedded, we can: 

• Compare words. 

• Apply our favorite machine learning method (DL) to represent 
sequences of words. 

• At document retrieval time in LSA, the representation of a new 
document is a weighted sum of word embeddings (bag-of-
words -> bag-of-embeddings): U’ x
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bi-gram
• A bi-gram is a model of the probability of a word 

given the preceding one: 

• The simplest approach consists of building a 
(normalized) matrix of counts:

p(wk|wk�1)

ci,j number of times word i 
is preceded by word j

wk 2 V

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5

preceding word

cu
rre

nt
 w

or
d
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n-gram
• A n-gram is a model of the probability of a word 

given the preceding ones: 

• The simplest approach consists of building a 
(normalized) matrix of counts:

ci,j number of times word i is 
preceded by word in context

wk 2 V

preceding words

cu
rre

nt
 w

or
d

p(wk|wk�1, . . . , wk�n+1)

c(wk|wk�1, . . . , wk�n+1) =

2

4
c1,1 . . . c1,M
. . . ci,j . . .
c|V |,1 . . . c|V |,M

3

5
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Factorized bi-gram

• We can factorize (via SVD, for instance) the bigram 
to reduce the number of parameters and become 
more robust to noise (entries with low counts):

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

U 2 R|V |⇥D

V 2 RD⇥|V |

• Rows of U store “output” word embeddings, and 
columns of V store “input” word embeddings. 

input word

ou
tp

ut
 w

or
d
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Factorized bi-gram
• The same can be expressed as a two layer (linear) 

neural network:

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation  
of the input word

ou
tp

ut
 w

or
d
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Factorized bi-gram

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation  
of the input word

ou
tp

ut
 w

or
d

No need to multiply, 
V is just a look up table!

• The same can be expressed as a two layer (linear) 
neural network:
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Factorized bi-gram

c(wk|wk�1) =

2

4
c1,1 . . . c1,|V |
. . . ci,j . . .
c|V |,1 . . . c|V |,|V |

3

5 = UV

softmaxV U

2

66666666664

0
...
0
1
0
...
0

3

77777777775

input word

1-hot representation  
of the input word

ou
tp

ut
 w

or
d

No need to multiply, 
V is just a look up table!

NOTE: Since embeddings are free, there is no 
point adding non-linearities and more layers!
Here, depth does not help!

• The same can be expressed as a two layer (linear) 
neural network:
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Factorized bi-gram

• bi-gram model could be useful for type-ahead 
applications (in practice, it’s much better to 
condition upon the past n>2 words). 

• Factorized model yields word embeddings as a by-
product.
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Word Embeddings
• LSA learns word embeddings that take into 

account co-occurrences across documents. 

• bi-gram instead learns word embeddings that only 
take into account the next word. 

• It seems better to do something in between, using 
more context but just around the word of interest, 
yielding a method called word2vec.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



skip-gram
• Similar to factorized bi-gram model, but 

predict N preceding and N following 
words. 

• Words that have the same context will 
get similar embeddings. E.g.: cat & kitty. 

• Input projection is just look-up table. 
Bulk of computation is the the prediction 
of words in context. 

• Learning by cross-entropy minimization 
via SGD.

Mikolov et al. “Efficient estimation of word representations” rejected by ICLR 2013



word2vec

• code at: https://code.google.com/archive/p/word2vec/  

• see evaluation from Tomas’s NIPS 2013 presentation at: 

https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit 

Joulin et al. “Bag of tricks for efficient text classification” ACL 2016

https://code.google.com/archive/p/word2vec/
https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit


from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov 32
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from https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit credit T. Mikolov 33
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Recap
• Embedding words (from a 1-hot to a distributed 

representation) lets you: 

• understand similarity between words 

• plug them within any parametric ML model 

• Several ways to learn word embeddings. word2vec is 
still one of the most efficient ones. 

• Note word2vec leverages large amounts of unlabeled 
data. 
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Quick Refresh on the Basics

• Word Embeddings 

• Language Modeling

• Neural Machine Translation
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Language Modeling

• the math… 

• with Markov assumption (used by n-grams): 

• application: type-ahead.

p✓(w1, w2, . . . , wM ) = p✓(wM |wM�1 . . . , wM�n)p✓(wM�1|wM�2, . . . , wM�n�1) . . . p✓(w2|w1)p✓(w1)

p✓(w1, w2, . . . , wM ) = p✓(wM |wM�1 . . . , w1)p✓(wM�1|wM�2, . . . , w1) . . . p✓(w2|w1)p✓(w1)
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Neural Network LM

Y. Bengio et al. “A neural probabilistic language model” JMLR 2003



Neural Network LM

Y. Bengio et al. “A neural probabilistic language model” JMLR 2003

• Natural extension of the factorized bi-gram 
model. 

• Improved accuracy with more context. A bit 
better than n-gram (count based methods). 

• if we are just interested in word embeddings, 
much more expensive than word2vec. 

• It gives a representation to ordered 
sequences of n words.



Recurrent Neural Network

• In NN-LM, the hidden state is the concatenation of 
word embeddings. 

• Key idea of RNNs: compute a (non-linear) running 
average instead, to increase the size of the context. 

• Many variants… 
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Recurrent Neural Network
• Elman RNN:

Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(wk+1|h) = softmax(Uohk + bo)

LNLL = �
nX

i=1

log p(wi|wi�1, . . . , w1)

• Training (cross-entropy / negative log-likelihood loss):

40



RNN: Inference Time
• Elman RNN:

Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)

p(wk+1|h) = softmax(Uohk + bo)

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o
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RNN: Inference Time
• Elman RNN:

Elman “Finding structure in time” Cognitive Science 1990
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RNN: Inference Time
• Elman RNN:

Elman “Finding structure in time” Cognitive Science 1990
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RNN: Inference Time
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RNN: Inference Time
• Elman RNN:
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RNN: Inference Time
• Elman RNN:

Elman “Finding structure in time” Cognitive Science 1990

hk = �(Urhk�1 + U i1(wk) + br)
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RNNs
• Inference in an RNN is like a regular forward pass in a deep 

neural network, with two differences: 
• Weights are shared at every layer. 
• Inputs are provided at every layer. 

• Two possible applications: 
• Scoring: compute the log-likelihood of an input 

sequence (sum the log-prob scores at every step). 
• Generation: sample or take the max from the predicted 

distribution over words at each time step, and feed that 
prediction as input at the next time step.
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RNNs
• Inference in an RNN is like a regular forward pass in a deep 

neural network, with two differences: 
• Weights are shared at every layer. 
• Inputs are provided at every layer. 

• Two possible applications: 
• Scoring: compute the log-likelihood of an input sequence (sum the 

log-prob scores at every step). 
• Generation: sample or take the max from the predicted distribution 

over words at each time step, and feed that prediction as input at the 
next time step.
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RNN: Training Time
• Truncated Back-Propagation Through Time: 

• Unfold RNN for only N steps and do:  

• Forward 

• Backward 

• Weight update 

• Repeat the process on the following sequence of N 
words, but carry over the value of the last hidden 
state.

Werbos “Backpropagation through time: what does it do and how to do it” IEEE 199049



RNN: Truncated BPTT

Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

Forward Pass
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Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass

51



Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o
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h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Forward Pass
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Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Backward Pass
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Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o
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h0 h1 h2 h3 h4 h5 h6
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RNN: Truncated BPTT
Backward Pass
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Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U
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RNN: Truncated BPTT
Backward Pass
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Elman “Finding structure in time” Cognitive Science 1990

U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

o

RNN: Truncated BPTT
Parameter Update
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RNN: Truncated BPTT
Forward Pass
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U U U U U U
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RNN: Truncated BPTT
Forward Pass
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U U U U U U
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Forward Pass
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U U U U U U

U U U U U U

r r r r r r

o o o o o o
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RNN: Truncated BPTT
Backward Pass
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U U U U U U
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RNN: Truncated BPTT
Backward Pass
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RNN: Truncated BPTT
Backward Pass
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U U U U U U

U U U U U U

r r r r r r

o o o o o o

w1 w2 w3 w4 w5 w6

h0 h1 h2 h3 h4 h5 h6

ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7

RNN: Truncated BPTT
Parameter Update
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Recap
• RNNs are more powerful because they capture a 

context of potentially “infinite” size.  

• The hidden state of a RNN can be interpreted as a way 
to represent the history of what has been seen so far. 

• RNNs can be useful to represent variable length 
sentences. 

• There are lots of RNN variants. The best working ones 
have gating (units that multiply other units): e.g.: LSTM 
and GRU.
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Quick Refresh on the Basics

• Word Embeddings 

• Language Modeling 

• Machine Translation
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Brief History of MT

• Rule-based systems 

• Statistical MT 

• Neural MT

time

1970

1990

2014

amount of bitexts

~10,000,000

~10,000

0 (dictionary + prior)
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Brief History of MT

• Rule-based systems 

• Statistical MT 

• Neural MT

time

1970

1990

2014

amount of bitexts

~10,000,000

~10,000

0 (dictionary + prior)

compute

~100Tf

~1Mf

…

67 M. Ranzato



Example: 
ITA (source) : Il gatto si e’ seduto sul tappetino. 

EN (target) : The cat sat on the mat. 

Approach: 
Have one RNN/CNN to encode the source sentence, and another RNN/
CNN/MemNN to predict the target sentence.  
The target RNN learns to (soft) align via attention. 

Neural machine translation by jointly learning to align and translate, Bahdanau et al. ICLR 2015

Neural Machine Translation 
(in 3 slides)

M. Ranzato
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Y. LeCun’s diagram

the cat sat

cat sat on

69

M. Ranzato
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the cat sat

cat sat on

70

.* -> softmax

Sum

il gatto si e’ seduto sul tappetino

0.95

Source Target

1) Represent source

M. Ranzato

Source Encoder (RNN/CNN)
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the cat sat

cat sat on

71

Source Encoder (RNN/CNN)

dot product -> softmax

Sum

il gatto si e’ seduto

0.95

Source Target

2) score each source word (attention)

M. Ranzato

sul tappetino
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the cat sat

cat sat on

72

Sum

il gatto si e’ seduto

0.95

Source Target

3) combine target hidden with source vector

M. Ranzato

sul tappetino

Source Encoder (RNN/CNN)

dot product -> softmax
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the cat sat

cat sat on

73

Sum

il gatto si e’ seduto

0.95

Source Target

3) combine target hidden with source vector

M. Ranzato

sul tappetino

Source Encoder (RNN/CNN)

dot product -> softmax

Alignment is learnt implicitly.
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NMT Training & Inference

Training: predict one target token at the time and minimize 
cross-entropy loss. 

Inference: find the most likely target sentence 
(approximately) using beam search. 

Evaluation: BLEU at inference time.

M. Ranzato

LTokNLL = �
nX

i=1

log p(ti|t1, . . . , ti�1,x)
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NMT Training & Inference

Training: predict one target token at the time and minimize 
cross-entropy loss. 

Inference: find the most likely target sentence 
(approximately) using beam search. 

Evaluation: BLEU at inference time.

M. Ranzato

û = argmin� log p(u|x)
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NMT Training & Inference

Training: predict one target token at the time and minimize 
cross-entropy loss. 

Inference: find the most likely target sentence 
(approximately) using beam search. 

Evaluation: compute BLEU on hypothesis returned by the 
inference procedure

M. RanzatoBLEU: a method for automatic evaluation of machine translation, Papineni et al. ACL 2002

pn =

P
generated sentences

P
ngrams Clip(Count(ngram matches))

P
generated sentences

P
ngrams Count(ngram) BLEU = BP e

PN
n=1

1
N log pn



Challenges
• Most language pairs have little parallel data. How to estimate parameters? 

• One-to-many mapping / uncertainty, there does not exist a metric able to account for 
uncertainty. 

• Model is asked to predict a single token at training time, but the whole sequence at 
test time. 

• Exposure bias: training and testing are inconsistent because model has never 
observed its own predictions at training time. 

• At training time, we optimize for a different loss. 

• Evaluation criterion is not differentiable.   

• Domain shift.

M. RanzatoSix challenges for neural machine translation, Koehn et al. Workshop NMT, ACL 2017



Challenges
• Most language pairs have little parallel data. How to estimate parameters?

• One-to-many mapping / uncertainty, there does not exist a metric able to 
account for uncertainty.

• Model is asked to predict a single token at training time, but the whole 
sequence at test time.

• Exposure bias: training and testing are inconsistent because model has never 
observed its own predictions at training time. 

• At training time, we optimize for a different loss. 

• Evaluation criterion is not differentiable.   

• Domain shift.

M. RanzatoSix challenges for neural machine translation, Koehn et al. Workshop NMT, ACL 2017



Outline
• PART 0  [lecture 1] 

• Natural Language Processing & Deep Learning 

• Neural Machine Translation 

• Part 1  [lecture 1] 

• Unsupervised Word Translation

• Part 2  [lecture 2] 

• Unsupervised Sentence Translation 

• Part 3 [lecture 3] 

• Uncertainty and Sequence-Level Prediction in Machine Translation
84 M. Ranzato



Guillaume Lample Ludovic DenoyerAlexis Conneau Herve Jegou

Word Translation Without Parallel Data 
Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, Herve Jegou 
ICLR 2018 
https://arxiv.org/abs/1710.04087 
CODE:	https://github.com/facebookresearch/MUSE

85 M. Ranzato
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Learning from  
Low-Resource Language Pairs

• We could leverage: 

• Limited amount of parallel data. 

• Parallel data from other language pairs. 

• Large amount of monolingual data, which is 
often more easily available.

M. Ranzato86



Goal
• Training an NMT system without supervision, using 

monolingual data only. 

• Admittedly, unrealistic but… 

• Baseline for extensions using parallel data 
(from language pair of interest or others). 

• Scientific endeavor, towards our quest for a 
good unsupervised learning algorithm.

M. Ranzato87



Unsupervised Word Translation

• Motivation: A pre-requisite for unsupervised 
sentence translation. 

• Problem: given two monolingual corpora in two 
different languages, estimate bilingual lexicon. 

• Hint: the context of a word, is often similar across 
languages since each language refers to the same 
underlying physical world.

M. Ranzato88



M. Ranzato

Method

En It

1) learn word embeddings (word2vec) separately on each language 
using lots of monolingual data.
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cat
kitty

dog

car

ornitorinc

ornitorinco

auto

gatto
gattino

cane

M. Ranzato

Method

yx

En It

1) learn word embeddings (word2vec) separately on each language 
using lots of monolingual data.
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2) learn a rotation matrix to roughly align the two domains.  
E.g., via adversarial training: pick a word at random from each language, embed them, 
project one of the two, and make sure distributions match.

cat
kitty

dog

car

ornitorinc

ornitorinco

auto

gatto
gattino

cane

M. Ranzato

xi

yj
W

embedding i-th word in En

embedding j-th word in It

orthogonal matrix

LD(✓D|W ) = �Ex [log p(En|Wx; ✓D)]� Ey [log p(It|y; ✓D)]

LW (W✓D) = �Ex [log p(It|Wx; ✓D)]� Ey [log p(En|y; ✓D)]

Method

yx
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2) learn a rotation matrix to roughly align the two domains.  
E.g., via adversarial training: pick a word at random from each language, embed them, 
project one of the two, and make sure distributions match.

cat

dog

car

ornitorinc ornitorinco

auto

gatto
gattino

cane

M. Ranzato

xi

yj
W

embedding i-th word in En

embedding j-th word in It LD(✓D|W ) = �Ex [log p(En|Wx; ✓D)]� Ey [log p(It|y; ✓D)]

LW (W✓D) = �Ex [log p(It|Wx; ✓D)]� Ey [log p(En|y; ✓D)]

Wx y

kitty

Method

orthogonal matrix
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3) Iterative refinement via orthogonal Procrustes, using the most frequent 
words. 
Pick most frequent words, translate them via nearest neighbor, solve least square, and iterate.

cat

kitty

dog

car

ornitorinc ornitorinco

auto

gatto
gattino

cane

M. Ranzato

xi

yj
W

embedding i-th word in En

embedding j-th word in It

Wx y

Wt = argmin ||Wt�1X � Y ||2, s.t. WtW
T
t = I

Method

orthogonal matrix
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3) Iterative refinement via orthogonal Procrustes, using the most frequent 
words. 
Pick most frequent words, translate them via nearest neighbor, solve least square, and iterate.
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xi

yj
W

embedding i-th word in En

embedding j-th word in It

Wx y

Wt = argmin ||Wt�1X � Y ||2, s.t. WtW
T
t = I

Method

orthogonal matrix
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4) Build lexicon using metric that compensates for hubness. 
There are words that have lots of neighbors, while others that are not neighbors of anybody.

cat
kitty

dog

car

ornitorinc ornitorinco

auto

gatto
gattino

cane
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xi

yj
W

embedding i-th word in En

embedding j-th word in It

Wx y

CSLS(Wx, y) = 2 cos(Wx, y)� rEn(Wx)� rIt(y)

rEn(Wx) =
1

K

X

yt2NEn(Wx)

cos(Wx, yt)

Method

orthogonal matrix
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xi

yj
W

embedding i-th word in En

embedding j-th word in It

Wx y

CSLS(Wx, y) = 2 cos(Wx, y)� rEn(Wx)� rIt(y)

rEn(Wx) =
1

K

X

yt2NEn(Wx)

cos(Wx, yt)

ornitorinco
cane

orthogonal matrix

4) Build lexicon using metric that compensates for hubness. 
There are words that have lots of neighbors, while others that are not neighbors of anybody.
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Results on Word Translation

20

32

44

56

68

en-it it-en

58.7

66.2

56.3

63.7

38.3

45.1

38.5

44.9

31.1

36.8 38

43.1

33.8

39.7

31

36.1

24.6

38.5

24.9

33.8

Mikolov	et	al.	(2013) Dinu	et	al.	(2015) Faruqui	&	Dyer	(2014)2 Artetxe	et	al.	(2017) Smith	et	al.	(2017)
Procrustes	–	NN Procrustes	–	CSLS Unsupervised	–	CSLS Procrustes	–	CSLS	(wiki) Unsupervised	–	CSLS	(wiki)

P@1

M. Ranzato

More results on several language pairs, analysis and other tasks in 
the paper. 
By using more anchor points and lots of unlabeled data,  
we even outperform supervised approaches!

supervised
approaches

supervised
approaches

unsupervised
approaches

unsupervised
approaches
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MUSE

• 110 ground truth bilingual dictionaries 

• code to align embeddings

https://github.com/facebookresearch/MUSE

98 M. Ranzato
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Key Idea

• Learn representations of each domain. 

• Translate by aligning sets of embeddings. 

• How to apply this principle to sentences?

M. Ranzato99



Outline
• PART 0  [lecture 1] 

• Natural Language Processing & Deep Learning 

• Neural Machine Translation 

• Part 1  [lecture 1] 

• Unsupervised Word Translation 

• Part 2  [lecture 2] 

• Unsupervised Sentence Translation

• Part 3 [lecture 3] 

• Uncertainty and Sequence-Level Prediction in Machine Translation
100



Guillaume Lample Ludovic DenoyerAlexis Conneau

Unsupervised Machine Translation Using Monolingual Corpora Only 
Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato 
ICLR 2018 
https://arxiv.org/abs/1711.00043 

Myle Ott

Phrase-Based and Neural Unsupervised Machine Translation 
Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato 
https://arxiv.org/abs/1804.07755 
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Naïve Application of MUSE
• In general, this may not work on sentences 

because: 

• Without leveraging compositional structure, 
space is exponentially large. 

• Need good sentence representations. 

• Unlikely that a linear mapping is sufficient to 
align sentence representations of two 
languages.

M. Ranzato102



Toy Illustration

2D embeddings of valid sentences in the source language.

thank you
thank you very much

the cat sat on the matabsolutely despicable

103 M. Ranzato



Toy Illustration

Actually observed source sentences in  
the monolingual data with underlying manifold.

104 M. Ranzato



Toy Illustration

Similarly for the target sentences (in red).

105 M. Ranzato



Toy Illustration

Empty dots correspond to unobserved translations.

106 M. Ranzato



3 Principles of UnsupMT: #1

Initialization: start by using good token-level  
(e.g., word-level using MUSE) correspondences.

107 M. Ranzato



3 Principles of UnsupMT: #2

Language Modeling:  
make sure generations belong to the desired language.

108 M. Ranzato



Back-Translation: reconstruct original sentence  
from translation (cross markers), in both directions.

Source Language

Target Language

fo
rw

ar
d 

 m
od

el

3 Principles of UnsupMT: #3

target sentence

noisy source-domain sentence
actual source-domain translation

ba
ck

w
ar

d 
 

m
od

el
Sennrich et al. “Improving NMT models with monolingual data” ACL 2016



Source Language

Target Language ba
ck
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ar
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noisy target-domain sentence

source sentence

fo
rw

ar
d 

m
od

el

Sennrich et al. “Improving NMT models with monolingual data” ACL 2016

3 Principles of UnsupMT: #3

Back-Translation: reconstruct original sentence  
from translation (cross markers), in both directions.



Generic UnsupMT Algorithm

111



Instantiations

• Phrase-based Machine Translation  

• Neural Machine Translation 

• Hybrid: PBSMT + NMT

112 M. Ranzato



PBSMT (in 1 slide)
• Training consists of: 

• alignment of phrases 

• construction of phrase tables (count-based) 

• training of language model (n-gram) 

• This is a good candidate for unsupMT because: 

• memorization based, it has less parameters to fit. 

• It often beats NMT when labeled data is scarce.

Koehn et al. “Statistical Phrase-Based Translation” NAACL 2003



PBSMT: initialization

• MUSE to align word/phrase embeddings 

• Populate unigram (more generally, n-gram) phrase 
tables by looking at cosine distance of neighbors:

p(tj |si) =
e

1
T cos(e(tj),We(si))

P
k e

1
T cos(e(tk),We(si))

source wordtarget word MUSE rotation
114 M. Ranzato



PBSMT: Language Modeling

• Just an n-gram language model. 

• Responsible for fixing incorrect entries in 
phrase table.

115 M. Ranzato



PBSMT: Back-Translation

• Iterative back-translation (5M sentences at the 
time). 

• As we iterate and phrase table gets better, 
longer spans can be reordered.

116 M. Ranzato



PBSMT: Summary

117



Instantiations

• Phrase-based Machine Translation  

• Neural Machine Translation

• Hybrid: PBSMT + NMT

118 M. Ranzato



NMT: Initialization

• For distant languages: 

• MUSE unsupervised word alignment 

• For languages that share tokens (word roots, etc.) 

• Joint learning of embeddings with BPEs.

Sennrich et al. “NMT of rare words with subword units” ACL 2015 M. Ranzato



Joint Learning with BPEs
En

It

- La costituzione e’ stata … 
- The constitution was … 
- La luna orbita intorno al.. 
- Lunar calendar is… 

- Merge the monolingual datasets. 
- Apply BPE tokenization. 
- Learn token embeddings; as many will be shared 

and space is common, there is no need to align.

120 M. Ranzato



NMT: Language Modeling

encoder

y

decoder
y + n

hen(y + n)

ỹ

NLL

encoder decoder

NLL

x̃

x

x+ n hit(x+ n)
It DAE

En DAE

Since we work with a seq2seq model with attention, we 
train the decoder LM with a denoising autoencoder task.

121



NMT: Language Modeling
Since we work with a seq2seq model with attention, we 

train the decoder LM with a denoising autoencoder task.

Arizona	was	the	first	to	introduce	such	a	requirement	.
Arizona	was	the	first	to																			such	a	requirement	.
Arizona	was								first	to	introduce	such	a	requirement	.

Ref:

Arizona	was	the	first	to	introduce	such	a	requirement	.
Arizona	the	first	was	to	introduce	a	requirement	such.
Arizona	was	the	to	introduce	first	such	requirement	a	.

Ref:

Drop

Swap

Even with attention, the model has to learn regularities in the input (not 
just copy but a good language model).

122 M. Ranzato



NMT: back-translation
• given a mini-batch of sentences from the source 

monolingual dataset do: 

• Use the source-to-target model to translate them. 

• Use these translations as input to the target-to-
source model and predict original inputs. 

• Update parameters of target-to-source model. 

• and vice versa, exchanging source with target.

123 M. Ranzato



encoder decoder encoder decoder
en enit it

y h(y) x̂ h(x̂) ˆ̂y

Illustration of the model during back-translation:

An Alternative View

124 M. Ranzato



An Alternative View
Illustration of the model during back-translation:

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

en enit it

y h(y) x̂ h(x̂) ˆ̂y

outer-encoder outer-decoder

M. Ranzato125



An Alternative View

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

en enit it

y h(y) x̂ h(x̂) ˆ̂y

outer-encoder outer-decoder

How to constrain the intermediate sentence to be a valid Italian sentence? 
It has to be a valid sentence and it has to be a translation.

M. Ranzato

Illustration of the model during back-translation:
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An Alternative View

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

en enit it

y h(y) x̂ h(x̂) ˆ̂y

outer-encoder outer-decoder

How to constrain the intermediate sentence to be a valid Italian sentence?

M. Ranzato

- we could add some language modeling constraints directly on     , but it 
would be hard to bprop and would be weak constraint on translation. 

- instead, we constraint the latent space.

x̂

Illustration of the model during back-translation:
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Adding Language Modeling

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

it enit en

outer-encoder outer-decoder

M. Ranzato

x+ n y + n

Since inner decoders are shared between the LM and MT task, it should 
constraint the intermediate sentence to be fluent. 
But that’s not enough:  
- translation noise cannot be exactly reproduced (without parallel data). 
-  latent representation produced by the other inner encoder can be 

different.
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Adding Language Modeling

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

enit en

outer-encoder outer-decoder

M. Ranzato

x+ n y + n

Since inner decoders are shared between the LM and MT task, it should 
constraint the intermediate sentence to be fluent. 
But that’s not enough:  
- translation noise cannot be exactly reproduced (without parallel data). 
-  latent representation produced by the “other” inner encoder can be 

different.        WE NEED TO SHARE LATENT REPRESENTATIONS.

it

latent representation may not be 
robust to translation noise
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Adding Language Modeling

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

enit en

outer-encoder outer-decoder

M. Ranzato

x+ n y + n

Since inner decoders are shared between the LM and MT task, it should 
constraint the intermediate sentence to be fluent. 
But that’s not enough:  
- translation noise cannot be exactly reproduced (without parallel data). 
-  latent representation produced by the “other” inner encoder may be 

different.       

it

NMT won’t know how to translate.
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Adding Language Modeling

inner
encoder

inner 
decoder

inner
encoder

inner 
decoder

enit en

outer-encoder outer-decoder

M. Ranzato

x+ n y + n

Since inner decoders are shared between the LM and MT task, it should 
constraint the intermediate sentence to be fluent. 
But that’s not enough:  
- translation noise cannot be exactly reproduced (without parallel data). 
-  latent representation produced by the “other” inner encoder may be 

different.       

it

- WE NEED TO SHARE LATENT REPRESENTATIONS



NMT: Sharing Latent Space

inner
encoder

inner
decoder

inner
encoder

inner
decoder

enit en

outer-encoder outer-decoder

M. Ranzato

x+ n y + n

it

Sharing achieved via: 
1) shared encoder (and also decoder).  
2) joint BPE embedding learning.
Note: first decoder token specifies the language on the target-side.
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Instantiations

• Phrase-based Machine Translation  

• Neural Machine Translation 

• Hybrid: PBSMT + NMT

133 M. Ranzato



PBSMT + NMT

• Train PBSMT 

• Use PBSMT to produce data to train NMT in 
addition to its own back-translated data.

134 M. Ranzato



Methodology
En Fr

Take monolingual NewsCrawl 
datasets from 2007 till 2017.

M. Ranzato135



Methodology
En Fr

Test on original WMT test set  
(no overlap with training set).

M. Ranzato136



Datasets
• WMT’14 En-Fr 

• 50M sentences in each language for training 

• eval on newstest2014 

• WMT’16 En-De 

• 50M sentences in each language for training 

• eval on newstest2016

M. Ranzato137



Prior work
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Even after iteration 0, PBSMT is better than prior work! 
PBSMT works better than NMT, on these language pairs.

140 M. Ranzato
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PBSMT: WMT’14 En-Fr

142 M. Ranzato



NMT BLEU: 12.3 after epoch 1,  17.5 after epoch 3 and 24.2 after epoch 45.
PBSMT BLEU: 15.4 after iteration 0,  23.7 after iteration 1 and 24.7 after iteration 4.

143 M. Ranzato



NMT BLEU: 12.3 after epoch 1,  17.5 after epoch 3 and 24.2 after epoch 45.
PBSMT BLEU: 15.4 after iteration 0,  23.7 after iteration 1 and 24.7 after iteration 4.
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NMT BLEU: 12.3 after epoch 1,  17.5 after epoch 3 and 24.2 after epoch 45.
PBSMT BLEU: 15.4 after iteration 0,  23.7 after iteration 1 and 24.7 after iteration 4.
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WMT’14 En-Fr

146 M. Ranzato



Low-Resource Language 
Pair: En-Ro

• Similar training set up as in En-Fr and En-De. 

• training set: 2.9M monolingual sentences from 
NewsCrawl + monolingual data from WMT’16. 

• test set: newstest 2016.
RESULTS

Gu et al. 2018 
NMT 

PBSMT 
PBSMT+NMT

NA 
21.2 
21.3 
25.1

22.9 
19.4 
23.0 
23.9

En-Ro Ro-En
they use:  
• dictionary  
• 6K parallel sentences 
• parallel data in other languages
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Distant Language Pair: En-Ru
• Similar training set up as in En-Fr and En-De. 

• training set: 50M monolingual sentences from 
NewsCrawl. 

• test set: newstest 2016.

RESULTS

NMT 
PBSMT 

PBSMT+NMT

8.0 
13.4 
13.8

9.0 
16.6 
16.6

En-Ru Ru-En

148 M. Ranzato



Distant Language Pair: En-Ru

149 M. Ranzato



Distant & Low-Resource 
Language Pair: En-Ur

150 M. Ranzato

https://www.bbc.com/urdu/pakistan-44867259

https://www.bbc.com/urdu/pakistan-44867259


Distant & Low-Resource 
Language Pair: En-Ur

• Training on 5.5 monolingual sentences (Jawaid et 
al. 2014) from news sources. 

• Test on LDC2010T23 (news related).

RESULTS

PBSMT supervised 
PBSMT unsupervised 

9.8 
12.3

Ur-En

they use 800K parallel sentences (out 
of domain) from Tiedemann (2012).
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PBSMT Ablation: Initialization
WMT’14 Fr-En

152 M. Ranzato



PBSMT Ablation: Lang. Modeling
WMT’14 Fr-En
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PBSMT Ablation: Back-Translation
WMT’14 Fr-En
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NMT: Ablation

155 M. Ranzato



UnsupMT Summary
• 3 principles of unsupMT 

• initialization, i.e. token level translation 

• language modeling 

• back-translation 

• PBSMT & NMT version 

• Somewhat works also for distant and low resource 
languages.

M. Ranzato156



UnsupMT Considerations

• General problem: unsupervised learning of the 
mapping between two domains. 

• This is a task where a machine is probably better than 
humans, as it can easily leverage big data to learn 
patterns, dependencies and correspondences. 

• Trivial extensions to semi-supervised setting.

M. Ranzato157



Questions? 
Вопросы? 

¿Preguntas? 
Domande?

M. Ranzato158



Outline
• PART 0  [lecture 1] 

• Natural Language Processing & Deep Learning 

• Background refresher 

• Part 1  [lecture 1] 

• Unsupervised Word Translation 

• Part 2  [lecture 2] 

• Unsupervised Sentence Translation 

• Part 3 [lecture 3] 

• Uncertainty

• Sequence-Level Prediction in Machine Translation
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Analyzing Uncertainty in Neural Machine Translation
Myle Ott, Michael Auli, David Grangier, Marc'Aurelio Ranzato 
ICML 2018 
https://arxiv.org/abs/1803.00047 

Myle Ott Michael Auli David Grangier

credit to Myle for slides.



Goal: Investigate the effects of uncertainty in 
NMT model fitting and search

This work

161
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This work
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This work

Inherent uncertainty 
in the translation task

163
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This work

Training data may contain noise

164
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This work

Model 1 has very 
little uncertainty

165
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This work

NMT models can’t assign 0 
probability mass to any outputs

166
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This work

Model 2 has 
considerable uncertainty

167
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Goal: Investigate the effects of uncertainty in 
NMT model fitting and search 
• Do NMT models capture uncertainty, and how is this 

uncertainty represented in the model’s output 
distribution? 

• How does uncertainty affect search? 
• How closely does the model distribution match the data 

distribution? 
• How do we answer these questions with (typically) only 

a single reference translation per source sentence? 168

M. Ranzato



Experimental setup

Convolutional sequence-to-sequence models* 
(Gehring et al., 2017) 
Evaluation: compare translations with BLEU (Papineni 
et al., 2002) 
• Modified n-gram precision metric, values from 0 (worst) 

to 100 (best) 
Datasets: WMT14 English-French and English-
German 
• Mixture of news, parliamentary and web crawl data

* Results hold for other tested architectures too, e.g., LSTM

169
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Question: How much uncertainty is there in the 
model’s output distribution? 
Experiment: How many independent samples does 
it take to cover most of the sequence-level 
probability mass?

Do NMT models capture uncertainty?
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Do NMT models capture uncertainty?

Model’s output 
distribution is highly 
uncertain! 

Even after 10K samples 
we cover only 25% of 
sequence-level 
probability mass. 

What about beam 
search?

(WMT14 En-Fr)
171
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Beam search is very efficient! 

The reference score (       )  
is lower than beam hypotheses 

What is the quality (BLEU) of 
these translations?

(WMT14 En-Fr)

Do NMT models capture uncertainty?
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Beam search produces 
accurate translations 

Sampling produces 
increasingly likely 
hypotheses, but these get 
worse BLEU after ~200

(WMT14 En-Fr)

Uncertainty & Search
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Hint: Scatter Plot of Samples

M. Ranzato



Hint: Scatter Plot of Samples

M. Ranzato

Source #2375 (purple):
Should this election be decided two 
months after we stopped voting?

High-BLEU sample:

Low-BLEU sample:

Cette élection devrait-elle ëtre 
décidé deux mois après que le vote est terminé?

Target #2375 (purple):

Cette élection devrait-elle ëtre 
décidée deux mois après l'arrêt du scrutin?

Ce choix devrait-il ëtre décidé deux 
mois après la fin du vote?
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Hint: Scatter Plot of Samples

M. Ranzato

Should this election be decided two 
months after we stopped voting?

Cette élection devrait-elle ëtre 
décidé deux mois après que le vote est terminé?

Cette élection devrait-elle ëtre 
décidée deux mois après l'arrêt du scrutin?

Ce choix devrait-il ëtre décidé deux 
mois après la fin du vote?

BLEU is just a poor metric.

Source #2375 (purple):

High-BLEU sample:

Low-BLEU sample:

Target #2375 (purple):
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Hint: Scatter Plot of Samples

M. Ranzato

Source #115 (red):
The first nine episodes of Sheriff [unk]'s Wild 
West will be available from November 24 on the 
site [unk] or via its application for mobile phones 
and tablets.

High-logp low BLEU sample:

Les neuf premiers épisodes de [unk] [unk] s 
Wild West seront disponibles à partir du 24 
novembre sur le site [unk] ou via son 
application pour téléphones et tablettes.

Target #115 (red):

The first nine episodes of Sheriff [unk] s Wild 
West will be available from November 24 on 
the site [unk] or via its application for mobile 
phones and tablets.
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Hint: Scatter Plot of Samples

M. Ranzato

The first nine episodes of Sheriff [unk]'s Wild 
West will be available from November 24 on the 
site [unk] or via its application for mobile phones 
and tablets.

Les neuf premiers épisodes de [unk] [unk] s 
Wild West seront disponibles à partir du 24 
novembre sur le site [unk] ou via son 
application pour téléphones et tablettes.

The first nine episodes of Sheriff [unk] s Wild 
West will be available from November 24 on 
the site [unk] or via its application for mobile 
phones and tablets.

Model generates copies of 
source sentence!

Why does beam find this?

Source #115 (red):

High-logp low BLEU sample:

Target #115 (red):
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Source: The first nine episodes of Sheriff Callie ’s Wild 
West will be available (…) 

Reference: Les neuf premiers épisodes de shérif Callie’ s Wild 
West seront disponibles (…)  

Hypothesis: The first nine episodes of Sheriff Callie ’s Wild 
West will be available (…)

Uncertainty & Search
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Source: The first nine episodes of Sheriff Callie ’s Wild 
West will be available (…) 

Reference: Les neuf premiers épisodes de shérif Callie’ s Wild 
West seront disponibles (…)  

Hypothesis: The first nine episodes of Sheriff Callie ’s Wild 
West will be available (…)

Uncertainty & Search

log probs:   -4.53   -0.02      -0.28        -0.11      -0.01           -0.001   -0.004      -0.002 …
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Copies* are over-represented in the output of beam 
search 
• Copies make up 2.0% of the WMT14 En-Fr training set 
• Among beam hypotheses, copies account for: 
  Beam=1: 2.6%  Beam=5: 2.9%  Beam=20: 3.5%

* a copy is a translation that shares  
  >= 50% of its unigrams with the source

Uncertainty & Search
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Copies* are over-represented in the output of beam 
search 
• Copies make up 2.0% of the WMT14 En-Fr training set 
• Among beam hypotheses, copies account for: 
  Beam=1: 2.6%  Beam=5: 2.9%  Beam=20: 3.5%

* a copy is a translation that shares  
  >= 50% of its unigrams with the source

Uncertainty & Search

A simple idea: filter copies during search
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(WMT17 En-De)

Uncertainty & Search
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(WMT17 En-De)

Uncertainty & Search
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(WMT17 En-De)

Uncertainty & Search
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… and how closely does the model distribution match 
the data distribution? 
Challenging because: 
• We typically observe only a single sample from the data 

distribution for each source sentence (i.e., one reference 
translation) 

• The model and data distributions are intractable to enumerate 
We instead introduce necessary conditions for matching

How is uncertainty represented in the model 
distribution?

M. Ranzato



Analyzing the model distribution

What are the necessary conditions for the model 
distribution to match the data distribution: 
• …at the token level? 

• …at the sequence level? 

• …when considering multiple reference translations?
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Analyzing the model distribution—Token Level

(WMT14 En-Fr)

Histogram of unigram 
frequencies
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Histogram of unigram 
frequencies 
Beam under-estimates the 
rarest words, although sampling 
is not as bad

(WMT14 En-Fr)

Analyzing the model distribution—Token Level
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(WMT14 En-Fr)

Histogram of unigram 
frequencies 
Beam under-estimates the 
rarest words, although sampling 
is not as bad 
Beam over-estimates frequent 
words. 
We should expect this!

Analyzing the model distribution—Token Level
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(WMT14 En-Fr)

Histogram of unigram 
frequencies 
Beam under-estimates the 
rarest words, although sampling 
is not as bad 
Beam over-estimates frequent 
words. 
We should expect this! 
Sampling mostly matches the 
reference data distribution

Analyzing the model distribution—Token Level
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Analyzing the model distribution—Sequence Level

Synthetic experiment: 
• Retrain model on news subset of WMT, which does 

not contain copies 
• Artificially introduce copies in the training data with 

probability pnoise 

• Measure rate of copies among sampled hypotheses
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0.001 0.01 0.1 0.5

0.0001

0.001

0.01

0.1

1.0

ra
te

perfect match
exact copy

Analyzing the model distribution—Sequence Level

(WMT17 En-De)
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0.001 0.01 0.1 0.5

0.0001

0.001

0.01

0.1

1.0

ra
te

perfect match
exact copy

Model under-estimates 
copies at a sequence 
level

Analyzing the model distribution—Sequence Level

(WMT17 En-De)
194

M. Ranzato



0.001 0.01 0.1 0.5

0.0001

0.001

0.01

0.1

1.0

ra
te

perfect match
exact copy
partial (incl. exact) copy

Partial copies* do not 
appear in training, yet… 

The model smears 
probability mass in 
hypothesis space

(WMT17 En-De)

* A partial copy has a unigram 
overlap of >= 50% with the 
source

Analyzing the model distribution—Sequence Level
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Collect 10 additional reference translations from distinct 
human translators 
• 500 sentences (En-Fr) and 500 sentences (En-De) 
• 10K sentences total 
• Available at: github.com/facebookresearch/analyzing-uncertainty-nmt

Analyzing the model distribution—with Mult. References
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Se
nt

en
ce

 B
LE

U

single reference   

38.2
41.4

44.5

inter-human
beam (K=5)
sampling (K=200)

(WMT14 En-Fr)
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Se
nt

en
ce

 B
LE

U

single reference oracle reference  

64.1

38.2

70.2

41.4

71

44.5

inter-human
beam (K=5)
sampling (K=200)

(WMT14 En-Fr)

oracle reference: BLEU w.r.t. best matching reference

Source: Thanks a lot! 
Best hypothesis: Merci! 

Ref1: Merci beaucoup! 
Ref2: Merci beaucoup. 
Ref3: Merci! 
Ref4: ….
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Se
nt

en
ce

 B
LE

U

single reference oracle reference  

64.1

38.2

70.2

41.4

71

44.5

inter-human
beam (K=5)
sampling (K=200)

(WMT14 En-Fr)

oracle reference: BLEU w.r.t. best matching reference
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Se
nt

en
ce

 B
LE

U

single reference oracle reference  

64.1

38.2

70.2

41.4

71

44.5

inter-human
beam (K=5)
sampling (K=200)

(WMT14 En-Fr)

The best beam hypothesis 
is very close to a reference

oracle reference: BLEU w.r.t. best matching reference
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Se
nt

en
ce

 B
LE

U

single reference oracle reference average oracle

39.1

64.1

38.2

65.7
70.2

41.4

71

44.5

inter-human
beam (K=5)
sampling (K=200)

(WMT14 En-Fr)

average oracle: 
average oracle reference BLEU over top-K hypotheses

Source: Thanks a lot! 
Hypothesis #1: Merci! 
Hypothesis #2: Merci merci! 

Ref1: Merci beaucoup! 
Ref2: Merci beaucoup. 
Ref3: Merci! 
Ref4: …. 201
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Se
nt

en
ce

 B
LE

U

single reference oracle reference average oracle

39.1

64.1

38.2

65.7
70.2

41.4

71

44.5

inter-human
beam (K=5)
sampling (K=200)

(WMT14 En-Fr)

average oracle: 
average oracle reference BLEU over top-K hypotheses
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Most beam hypotheses 
are close to a reference

Se
nt

en
ce

 B
LE

U

single reference oracle reference average oracle

39.1

64.1

38.2

65.7
70.2

41.4

71

44.5

inter-human
beam (K=5)
sampling (K=200)

Most sampled hypotheses 
are far from a reference

(WMT14 En-Fr)
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# refs covered
7.4

5

1.9

beam K=5
beam K=200
sampling K=200 

# refs covered: number of distinct references 
(out of 10) matched to at least one hypothesis

Sampling covers more 
hypotheses (is more diverse) 
than beam search

M. Ranzato



Conclusion

• NMT models capture uncertainty in their output distributions 
• Beam search is efficient and effective, but prefers frequent words 
• Degradation with large beams is mostly due to copying, but this can 

be mitigated by filtering the training set 
• Models are well calibrated at the token level, but smear probability 

mass at the sequence level 
• Smearing may be responsible for lack of diversity in beam search 

outputs 

Dataset link: github.com/facebookresearch/analyzing-uncertainty-nmt
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Questions? 
Вопросы? 

¿Preguntas? 
Domande?

M. Ranzato206 M. Ranzato



Outline
• PART 0  [lecture 1] 

• Natural Language Processing & Deep Learning 

• Neural Machine Translation 

• Part 1  [lecture 1] 

• Unsupervised Word Translation 

• Part 2  [lecture 2] 

• Unsupervised Sentence Translation 

• Part 3 [lecture 3] 

• Uncertainty 

• Sequence-Level Prediction in Machine Translation
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Classical Structured Prediction Losses for Sequence to Sequence Learning 
Sergey Edunov, Myle Ott, Michael Auli, David Grangier, Marc'Aurelio Ranzato 
NAACL 2018 
https://arxiv.org/abs/1711.04956 

Myle OttSergey Edunov Michael Auli David Grangier
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Problems
• Model is asked to predict a single token at training time, 

but the whole sequence at test time. 

• Exposure bias: training and testing are inconsistent 
because model has never observed its own predictions at 
training time. 

• At training time, we optimize for a different loss. 

• Evaluation criterion is not differentiable.

M. RanzatoSequence level training with RNNs, Ranzato et al. ICLR 2016



Selection of Recent Literature
• RL-inspired methods 

• MIXER 

• Actor-Critic 

• Using beam search at training time: 

• BSO 

• Distillation based

Ranzato et al. ICLR 2016

Bahdanau et al. ICLR 2017

Wiseman et al. ACL 2016

Kim et al. EMNLP 2016

M. Ranzato210



Question
How do classical structure prediction losses compare 
against these recent methods? 

Classical losses were often applied to log-linear models 
and/or other problems than MT.

Tsochantaridis et al. “Large margin methods for structured and interdependent output variables” JMLR 2005

Och “Minimum error rate training in statistical machine translation” ACL 2003

Smith and Eisner “Minimum risk annealing for training log-linear models” ACL 2006

Gimpel and Smith “Softmax-margin CRFs: training log-linear models with cost functions” ACL 2010

Taskar et al. “Max-margin Markov networks” NIPS 2003
Collins “Discriminative training methods for HMMs” EMNLP 2002

M. Ranzato

Bottou et al. “Global training of document processing systems with graph transformer networks” CVPR 1997
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Question
How do classical structure prediction losses compare 
against these recent methods? 

Classical losses were often applied to log-linear models 
and/or other problems than MT.

M. Ranzato

Can the Energy-Based Model framework help unifying these 
different approaches?

LeCun et al. “A tutorial on energy-based learning” MIT Press 2006



Energy-Based Learning

LeCun et al. “A tutorial on energy-based learning” MIT Press 2006 M. Ranzato

space of possible 
predictions

Energy

target prediction

During training

@L
@✓

=
@E

@✓

���
(x,y+)

� @E

@✓

���
(x,y�)

Some losses have explicit negative term, 
others replace it with constraints in the 
loss or in the architecture.



Energy-Based Learning

LeCun et al. “A tutorial on energy-based learning” MIT Press 2006 M. Ranzato

space of possible 
predictionstarget=prediction

After training
Energy



Challenges

M. Ranzato

space of possible 
predictionstarget prediction

Key questions if we want to extend EBMs to MT: 
• how to search for most likely output? Enumeration & exact search are intractable. 
• how to deal with uncertainty?  
• what if target is not reachable? 

Energy

215



M. Ranzato

Key questions if we want to extend EBMs to MT: 
• how to search for most likely output? Enumeration & exact search are intractable. 
• how to deal with uncertainty? What if we only observe one minimum among many? 
• what if target is not reachable? 

EXAMPLE
Source: The night before would be practically sleepless .

Target #1: La nuit qui précède pourrait s’avérer quasiment blanche .
Target #2: Il ne dormait pratiquement pas la nuit précédente .
Target #3: La nuit précédente allait être pratiquement sans sommeil .
Target #4: La nuit précédente , on n’a presque pas dormi .
Target #5: La veille , presque personne ne connaitra le sommeil .

Challenges

Ott et al. “Analyzing uncertainty in NMT” arXiv:1803.00047 2018



M. Ranzato

Key questions if we want to extend EBMs to MT: 
• how to search for most likely output? Enumeration & exact search are intractable. 
• how to deal with uncertainty? What if we only observe one minimum among many? 
• what if target is not reachable? 

EXAMPLE
Source: nice .

Target #1: chouette .
Target #2: belle .
Target #3: beau .

Challenges

Ott et al. “Analyzing uncertainty in NMT” arXiv:1803.00047 2018



M. Ranzato

Key questions if we want to extend EBMs to MT: 
• how to search for most likely output? Enumeration & exact search are intractable. 
• how to deal with uncertainty? What if we only observe one minimum among many? 
• what if target is not reachable? E.g.: Not reachable = no hyp. in the beam is close to 

the reference. 

Challenges

Ott et al. “Analyzing uncertainty in NMT” ICML 2018



Notation

x = (x1, . . . , xm) input sentence

M. Ranzato219



Notation

input sentence

t

x

target sentence

M. Ranzato220



Notation

input sentence

t

x

target sentence

u hypothesis generated by the model

M. Ranzato221



Notation

input sentence

t

x

target sentence

u hypothesis generated by the model

oracle hypothesis

M. Ranzato

u⇤ = arg min
u2U(x)

cost(u, t)
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Notation

input sentence

t

x

target sentence

u hypothesis generated by the model

u⇤ oracle hypothesis

most likely  
hypothesis

M. Ranzato

û = arg min
u2U(x)

� log p(u|x)

223



Baseline: Token Level NLL

LTokNLL = �
nX

i=1

log p(ti|t1, . . . , ti�1,x)

for one particular training example and omitting 
dependence on model parameters.

M. Ranzato224



Sequence Level NLL

LSeqNLL = � log p(u⇤|x) + log
X

u2U(x)

p(u|x)

M. Ranzato

The sequence log-probability is simply the sum of the 
token-level log-probabilities.

}Energy
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Sequence Level NLL

LSeqNLL = � log p(u⇤|x) + log
X

u2U(x)

p(u|x)

M. Ranzato

The sequence log-probability is simply the sum of the 
token-level log-probabilities.

Homework: compute gradients of loss w.r.t. inputs to token level softmaxes.

Two key differences: choice of target and hypothesis set.

normalize over 
reachable set

decrease energy 
of reachable hyp. 
with lowest cost
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Sequence Level NLL

LSeqNLL = � log p(u⇤|x) + log
X

u2U(x)

p(u|x)

hypothesis space

Energy

t u⇤

U(x)

}
gradients

set of hypotheses reachable 
 by the model

M. Ranzato227



Example
Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.


Target

We have to fix our immigration policy.


Beam:

BLEU  Model score                             

75.0      -0.23                  We need to fix our immigration policy.

36.9      -0.36                  We need to fix our policy policy.

66.1      -0.42                  We have to fix our policy policy.

66.1      -0.44                  We've got to fix our immigration policy.


M. Ranzato228



Example
Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.


Target

We have to fix our immigration policy.


Beam:

BLEU  Model score                             

75.0      -0.23                  We need to fix our immigration policy.

36.9      -0.36                  We need to fix our policy policy.

66.1      -0.42                  We have to fix our policy policy.

66.1      -0.44                  We've got to fix our immigration policy.
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Observations
• Important to use oracle hypothesis as surrogate target 

as opposed to golden target. Otherwise, the model 
learns to assign very bad scores to its own hypotheses 
but is not trained to reach the target. 

• Evaluation metric only used for oracle selection of target. 

• Several ways to generate          : beam, sampling, …   

• Similar to token level NLL but normalizing over (subset 
of) hypotheses. Hypothesis score: average token level 
log-probability.

U(x)

M. Ranzato230



Expected Risk
LRisk =

X

u2U(x)

cost(t,u)
p(u|x)P

u02U(x) p(u
0|x)

• The cost is the evaluation metric; e.g.: 100-BLEU. 

• REINFORCE [1] is a special case of this (a single 
sample Monte Carlo estimate of the expectation 
over the whole hypothesis space).

M. Ranzato

Homework: compute gradients of loss w.r.t. inputs to token level softmaxes.

[1] Sequence level training with RNNs, Ranzato et al. ICLR 2016



Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.


Target

We have to fix our immigration policy.


Beam:

BLEU  Model score                             

75.0      -0.23                  We need to fix our immigration policy.                  

36.9      -0.36                  We need to fix our policy policy.

66.1      -0.42                  We have to fix our policy policy.

66.1      -0.44                  We've got to fix our immigration policy.


Example

(expected BLEU=42)
M. Ranzato232



Example

hypothesis spacet u⇤

U(x)

}
gradients

set of hypotheses reachable 
 by the model

M. Ranzato

Energy
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Max-Margin

• Energy: (negative) un-normalized score (or log-odds). 

• Margin:  

• The cost is our evaluation metric; e.g.: 100-BLEU. 

• Increase score of oracle hypothesis, while decreasing 
score of most likely hypothesis.

M. Ranzato

Homework: compute gradients of loss w.r.t. inputs to token level softmaxes.

LMaxMargin = max[0,m� (E(û)� E(u⇤))]

m = cost(t, û)� cost(t,u⇤)
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Source:

Wir müssen unsere Einwanderungspolitik in Ordnung bringen.


Target

We have to fix our immigration policy.


Beam:

BLEU  Model score                             

66.1      -0.20                  We have to fix our policy policy.

75.0      -0.23                  We need to fix our immigration policy.

36.9      -0.36                  We need to fix our policy policy.

66.1      -0.44                  We've got to fix our immigration policy.


M. Ranzato

Max-Margin
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hypothesis spacet u⇤

U(x)

}
gradients

set of hypotheses reachable 
 by the model

û

M. Ranzato

Max-Margin

Energy
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Check out the paper for more examples 
of sequence level training losses!

M. Ranzato237



Practical Tips
• Start from a model pre-trained at the token level. Training with 

search is excruciatingly slow… 

• Even better if pre-trained model had label smoothing. 

• Accuracy VS speed trade-off: offline/online generation of 
hypotheses. 

• Cost rescaling. 

• Mix token level NLL loss with sequence level loss to improve 
robustness. 

• Need to regularize more.

M. Ranzato238



Results on IWSLT’14 De-En
TEST

TokNLL 
(Wiseman et al. 2016) 24.0

BSO
(Wiseman et al. 2016) 26.4

Actor-Critic
(Bahdanau et al. 2016) 28.5

Phrase-based NMT
(Huang et al. 2017) 29.2

our TokNLL 31.7

SeqNLL 32.7

Risk 32.9

Perceptron 32.6

M. Ranzato239



Results on IWSLT’14 De-En
TEST

TokNLL 
(Wiseman et al. 2016) 24.0

BSO
(Wiseman et al. 2016) 26.4

Actor-Critic
(Bahdanau et al. 2016) 28.5

Phrase-based NMT
(Huang et al. 2017) 29.2

our TokNLL 31.7

SeqNLL 32.7

Risk 32.9

Max-Margin 32.6

M. Ranzato240



Observations
• Sequence level training does improve evaluation metric 

(both on training and) on test set. 

• There is not so much difference between the different 
variants of losses. Risk is just slightly better. 

• In our implementation and using the same computational 
resources, sequence level training is 26x slower per update 
using online beam generation of 5 hypotheses. 

• Hard comparison since each paper has a different baseline!

M. Ranzato241



Observations
• Sequence level training does improve evaluation metric 

(both on training and) on test set. 

• There is not so much difference between the different 
variants of losses. Risk is just slightly better. 

• In our implementation and using the same computational 
resources, sequence level training is 26x slower per update 
using online beam generation of 5 hypotheses. 

• Hard comparison since each paper has a different baseline!
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Fair Comparison to BSO
TEST

TokNLL 
(Wiseman et al. 2016) 24.0

BSO
(Wiseman et al. 2016) 26.4

Our re-implementation of their TokNLL 23.9

Risk on top of the above TokNLL 26.7

M. Ranzato243



Fair Comparison to BSO
TEST

TokNLL 
(Wiseman et al. 2016) 24.0

BSO
(Wiseman et al. 2016) 26.4

Our re-implementation of their TokNLL 23.9

Risk on top of the above TokNLL 26.7

M. Ranzato

These methods fare comparably once the baseline is the same…
244



Diminishing Returns

M. Ranzato

On WMT’14 En-Fr, TokNLL gets 40.6 while Risk gets 41.0
The stronger the baseline, the less to be gained.
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Large Models in MT

Beam search is very effective; only 20% of the tokens 
with probability < 0.7 (despite exposure bias)!



Large Models in MT

Very large NMT models make almost deterministic transitions. 
No much to be gained by sequence level training.



Conclusion
• Sequence level training does improve, but with 

diminishing returns. It’s computationally very 
expensive. 

• If model has little uncertainty (because of the task and 
because of the model being well (over)fitted), then 
sequence level training does not help much. 

• The particular method to train at the sequence level 
does not really matter. 

• Sequence level training is more prone to overfitting.
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EBMs & MT
• Nice unifying framework. 

• Different losses apply different weights to the “pull-up” 
and “pull-down” gradients. 

• Two key differences two usual EBM learning: 

• restrict set of hypotheses to those that are 
reachable, and 

• replace actual target by oracle hypothesis.

M. Ranzato249



Questions? 
Вопросы? 

¿Preguntas? 
Domande?
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THANK YOU

M. Ranzato

ranzato@fb.com 
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