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Why Continual Learning?

MS&E338 Reinforcement Learning Lecture 6 - April 19, 2023

Lecture 6: Mark Ring’s take on continual learning
Scribe: Hong Jun Jeon

Lecturer: Mark Ring

1 What is Continual Learning?

“The real world is characterized by a seemingly unlimited degree of detail and regularity... Humans, during
the course of their lives, continually grasp ever more complicated concepts and exhibit ever more intricate
behaviors. The world supports this continual learning process by providing a never-ending multitude of

complezities and reqularities ...”

Continual Learning to better understand human learning.
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Why Continual Learning?

Lecturer: Ben Van Roy

MS&E338 Reinforcement Learning

Lecture 1: Introduction

3 Motivating Examples

3.1 Recommendation systems

We can frame a prototypical recommendation system in terms of the above formulation. In particular, let X,
encode a combination of features pertaining to a product and a user, and let Y; be a binary label indicating
whether or not the user will later express that they “like” the product. Suppose the recommendation system
serves users of a Web service. In such a context, data arrives continuously and accumulates. And the
statistics of this data changes over time, perhaps driven by trends in fashion or emerging news or consumer
sentiment. A typical workflow involves applying the above steps periodically, starting from scratch each time.
For example, a production system could train a new model at the end of each month on the most recent two
years of data. In this way, continual learning is reduced to the standard machine learning paradigm.

3.2 Large language models

Today’s large language models assume an autoregressive structure, typically based on transformer architec-
tures. These models work with tokenized text, which is essentially text gathered from the Web and turned
into time series of symbols called tokens. Each token might represent a word or punctuation. A typical LLM
takes as its input X; a sequence of, say, one thousand consecutive tokens, and this sequence is labeled with

Continual Learning for real world applications.

Lecture 1 - April 3, 2023

Wangiao Xu
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Reality Check:
Applications Using Continual Learning
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Humans Are Continual Learners.
Maybe Machines Need Not To Be?

Intelligence of humans and machines is different because they have:
e Different sensory inputs
e Different constraints
e Different goals

Hypotheses:
i) Maybe machines need not to be continual learners after all!

ii) Maybe large-scale models are already continual. Is (lots of) data enough to be continual?

iii) Maybe machines would work better if they were continual learners, but it just so
happens that our current continual learning methods are not good enough. @



(Machine) Continual Learning Today

A lot of different settings. E.g.:

O O O O O

O

memory restrictions

task boundaries

type of supervision

choice of metrics

type of non-stationarity

methodology (what does it mean to have one life only?)

Unclear what is the goal, what matters and what actually works

O

Experience replay (from RL) is amongst the most robust and effective
method.
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CL & Large-Scale Models

e Currently there is not much CL in large-scale modeling.
o At best, one step adaptation.

e Unclear alignment between CL research and large-scale model research.

This lecture is about discussing opportunities for CL (and RL) in large-scale
learning moving forward.

Example of recent papers on CL in a large-scale setting:

Ramasesh et al.Effects of scale on catastrophic forgetting in neural networks ICLR 2022
Scialom et al. Finetuned language-models are continual learners EMNLP 2022

Liska et al. Streaming QA ICML 2022

O


https://openreview.net/forum?id=GhVS8_yPeEa
https://aclanthology.org/2022.emnlp-main.410/
https://proceedings.mlr.press/v162/liska22a/liska22a.pdf

Agenda

e Prologue [10min]

e Continual Learning for Large-Scale Learning: Why, What & How [15min]
e Sandboxes for Supervised CL [20min]

e Toy approach to CL [15min]

e Discussion [20min]

References
e Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission) @
e \eniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2211.11747
https://arxiv.org/abs/2012.12631

Why Continual Learning?
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The typical life cycle of a ML practitioner:

k4
Look at the data =~ * O

Borrow ideas, code, model parameters, etc. GitHub

Try out a few things

and a few more..

task A
time (days)

and more..
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The typical life cycle of a ML practitioner:

There is a hierarchy of continual learning problems.

task A Continual learning is already happening in ML, but it
is not efficient, it is not automated.

{

time (weeks

O



The typical life cycle of the swarm model:




Continual Learning for Machine Learning

Assumptions
e We (both humans and machines) live in time.
e Changes (e.g, data, constraints) happen over time.
o Hypothesis: Nobody will have ever learned enough! « to be verified..
e Efficiency matters as much as efficacy.

What is continual learning:
e Continual learning is about learning over time and leveraging past learnings
to improve future learnings in terms of both efficacy and efficiency.

Current Machine Learning and Large-Scale Learning are already continual,
but inefficiently so.
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Continual Learning for Large-Scale Learning

One (some) of these models are very large-scale.



The current state of affairs

» New tasks and data!
Uil [Pl / Training phase
5 N/

[
|
\

Deployment phase )

/
[
\
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Wies, \
downstream downstream l
task #1 task #2 I\

time )

Current large-scale systems are accurate but costly and inefficient.
Could this be an opportunity for CL?

downstream
task #3

9

LAl

downstream
task #4
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The continual learning dream...
Leverage what we learnt before — improve efficiency

Continual training & deployment
2 I P ww ;

downstream downstream downstream downstream
task #1 task #2 task #3 task #4
time
A single model, shared by everybody, that evolves over time to become more @

efficient at learning the next thing.



Public

Hard Questions

e What abstraction to use for continual learning?

o What does cross-validation mean in this context?

o What data can be useful to study this problem in a controlled setting?
e How to characterize a swarm model?
e How to measure performance?

It is often a good idea to start from a concrete application or problem, and derive from there

abstractions.
Judgement is required to figure out the good level of coarseness of the abstraction.
In our case, we want to build a large-scale system that is effective but also efficient at both

training and testing time.



What Continual Learning?
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MS&E338 Reinforcement Learning

Lecture 2 - April 7, 2023

Lecture 2: Non-stationary linear regression

Lecturer: Ben Van Roy

Scribe: Anmol Kagrecha, Thanawat Sornwanee

max lim inf
™,V T— 00

=
—K R
= ; t+1

s.t. flops < C
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MS&E338 Reinforcement Learning

Lecture 2 - April 7, 2023

Lecture 2: Non-stationary linear regression

Lecturer: Ben Van Roy

Scribe: Anmol Kagrecha, Thanawat Sornwanee

max liminf —E Ity
g T—o0
We care about the future (not
s.t. flops <C the past!).

Notice the Im T — oo

Catastrophic forgetting is a symptom of poor learning, not an objective per se.
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MS&E338 Reinforcement Learning Lecture 2 - April 7, 2023

Lecture 2: Non-stationary linear regression

Lecturer: Ben Van Roy Scribe: Anmol Kagrecha, Thanawat Sornwanee

v T—oo 1

=
max liminf —E Z Riiq
t=0

s.t. flops <C

Constraints are criticall! @



On Intelligence

Intelligence must arise when there are suitable constraints.

What are the constraints?
number of examples?
compute?

memory?

time?

?

Continual learning is an instance of multi-objective learning.
Don't tell me which method is most accurate.. but which one strikes the best
trade-off between efficiency and accuracy.

Legg et al. Universal Intelligence arXiv 2007

O


https://arxiv.org/abs/0712.3329

How Continual Learning?
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Desiderata

No human in the loop

Scalable

Distributed

Efficient to use

Efficient to update, e.g. enables incremental learning
Self-Improving

} Never-ending learning

O
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Ingredients

Transfer learning to cope with constraints:

o time

o compute

o number of examples needed
Modular

o Enables efficient incremental learning

o Enables efficient inference

o Enables compositional generalization
Distributed

o Enables learning of swarms

o Enables scaling

o Robustness
Meta-Learning

o Qperates at coarser time scale

o Searches over optimizers, architectures, etc.

O
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Ingredients

Transfer learning to cope with constraints:

o time

o compute

o number of examples needed
Modular

o Enables efficient incremental learning

o Enables efficient inference

o Enables compositional generalization
Distributed

o Enables learning of swarms

o Enables scaling

o Robustness
Meta-Learning

o Qperates at coarser time scale

o Searches over optimizers, architectures, etc.

,_.-.-' Constraints

Time
Communication
Latency

Privacy

What is not a constraint:
e memory (disk)

Not so much of a constraint:
e compute
e data

O



Colab Demo on Modularity

input

output
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https://colab.research.google.com/drive/1GborZbpG_0qEH0pn3whnreNNVP2Giw6u?usp=sharing

Hard Questions

Efficiency hinges on knowledge transfer: what is knowledge?

Do “universal representations” exist? Can data be enough at some point?
What are the modules?

How to train a modular system s.t. modules interface well and yet
communication amongst them is scarce?

How to learn efficient meta-learners?

How to enable self-improvement?

The answer to these questions require a rather interdisciplinary approach.

We may draw inspiration from neuroscience (knowledge characterization), empirical analysis
(universal representation), algorithmic development (modularity), systems (distributed
computing), RL (self-improvement), etc.

O



Relation of CL to Other Fields: Lecture 1

@ CSL \RL/CRL

Figure 4: Mental picture for supervised learning (SL), continual supervised learning (CSL), reinforcement
learning (RL), and continual reinforcement learning (CRL).
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Relation of CL to Other Fields: Lecture 6
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Figure 2: The above depicts how one may view CL as being a core to all existing ML frameworks.
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Relation of CL to Other Fields: This Lecture

Most of ML is continual!
CL needs input from sub-fields like Machine Continual
meta-learning and auto-ml. Learning Learning
Vice-versa CL can lift these
subfields and make them more
practical.




How about RL?

e Natural setting for CL akin to human learning

e Not so natural for large-scale learning

e Perhaps controversial: Many (all?) fundamental questions might be answered
without making the next observation depend on the agent’s action..

Even in the supervised setting, there are lots of opportunities for RL research:

e How to use resources when horizon is infinite?
e How to optimize with non-differentiable constraints?
e How to efficiently search and self-improve?

Overall, there are plenty of opportunities for RL researchers to impact large-scale
continual learning.

O



Agenda

e Prologue [10min]

e Continual Learning for Large-Scale Learning: Why, What & How [15min]
e Sandboxes for Supervised CL [20min]

e Toy approach to CL [15min]

e Discussion [20min]

References
e Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission) @
e \eniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2211.11747
https://arxiv.org/abs/2012.12631

Designing Benchmarks

Benchmark = {data, metrics, methodology} + codebase, baselines...

Progress in the field is driven by the choice of benchmarks.

If we know what problem we want to solve (efficient large-scale learning), then we
can abstract it into a suitable benchmark.

Properties useful for large-scale learning:

rules out methods that do not transfer

rules out methods that do not scale

useful to assess how large-scale models can operate over time
construction is method agnostic

O



Designing Benchmarks
Benchmark = {data, metrics, methodology} + codebase, baselines...

Progress in the field is driven by the choice of benchmarks.

If we know what problem we want to solve (efficient large-scale learning), then we
can abstract it into a suitable benchmark.

Properties useful for large-scale learning:

rules out methods that do not transfer ) CTrL

rules out methods that do not scale

useful to assess how large-scale models can operate over time
e construction is method agnostic

References \ NEVIS'22 @

o NEVIS'22 Benchmark (arXiv 2022, in submission)
e Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2211.11747
https://arxiv.org/abs/2012.12631

Continual Supervised Learning

T2 T3 T4
o, Color: Task relatedness
= === Height: Amount of data
— D ——
¢ i
t2 t3 t 4 time

e Each dataset is a task, with its own input/output distribution.
e Tasks may relate to each other, but in unknown ways.
e Task ids are given to the learner both at training and test time.

e At test time, learner can be asked to perform any previous task.

CTrL is a suite of streams probing (supervised) continual learners across same basic axes.

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2012.12631

Continual Transfer Learning: Direct Transfer

amount T V\ -/ T2 T3 T4 Color: Task relatedness
of data v e H i ht A t f d t
N\ /] — eight: Amount of data
4 — =
t el
1 t2 t3 t4 time

Is the learner capable of figuring out T4 == T1 and that it should directly transfer knowledge?

Measure accuracy of T4 when:

a) Modelis trained on entire stream ideallv: A(T4|T1,T2, T3, T4)-A(T4)>>0
b) Model is trained just on T4 y:

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2012.12631

Continual Transfer Learning: Knowledge Update

T T2 2 T4 \./\, Color: Task relatedness
— == Heisht: Amount of data
—— v g
‘ t, t, t, time

Is the learner capable of figuring out it is best to update knowledge of first task even though T4 ==
T1?

Measure accuracy of T4 when:

ag Model is trained on entire stream ideally: AT4]T1,72,73,T4)-A(T4) = 0

b) Modelis trained just on T4

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Continual Transfer Learning: Transfer Input/Output Distribution

T2 T3 T4

s Color: Task relatedness
— === Height: Amount of data
v \—/
S ——— S ——
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t, t, t, time

If T4 is related to T1, can the learner transfer knowledge?

Simple measure accuracy of T4 when:

a) Modelis trained on entire stream ideallv: A(T4|T1,T2, T3, T4)-A(T4)>>0
b) Model is trained just on T4 y:

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Continual Transfer Learning: Plasticity/Interference

T2 T3 T4

s Color: Task relatedness
— Height: Amount of data
v
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Are previous unrelated tasks interfering with learning of the current task?

Simple measure accuracy of T4 when:

a) Modelis trained on entire stream ideallv: A(T4|T1,T2, T3, T4)-A(T4)=0
b) Model is trained just on T4 y:

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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CTrL: Holistic Performance Assessment

Average
”””” MNTDP-D Accuracy
Independent :
EWC PIasticiF P .\Forgettlng
Transfer [/ Memory
Output distf™ ~\| Efficiency
Transfe ./ Compute
Input dist. Efficiency

Knowledge Direct
Update Transfer

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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https://arxiv.org/abs/2012.12631

CTrL: Pros & Cons

Pros
e Intuitive
e Useful to rule out bad methods
e Not only a benchmark, it's an approach to benchmark construction

Cons
e Toy. Datasets are CIFAR, MNIST, SVHN, etc.
e In practice there might be more interesting dimensions of transfer to consider
e .. Too many metrics to track?

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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DeepMind

The Never Ending ﬂswal

classification Stream
e | (NEVIS’22)(

,//
Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)

O


https://arxiv.org/abs/2211.11747

Objective

Want to simulate life of a large-scale never-ending learning system which is exposed to

new tasks over time.
Benchmark should have:

e More realistic stream
e Simpler metric
e Explicit cross-validation methodology

e Alarge-scale benchmark for large-scale learning, still enabling quick prototyping

O

Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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NEVIS Construction

3 decades: 1992 — 2021
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O

Step 1: Sort proceedings chronologically.



NEVIS Construction

3 decades: 1992 — 2021

ICeV 2019 I time
Seoul, Koveo.

- CVPR seartie

JUNE 14-19 2020 WASHINGTON
o

O

Step 2: Sample 90 papers per year.



NEVIS Construction

3 decades: 1992 — 2021
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Step 3: Extract image classification tasks, if any, from each paper.



NEVIS Construction

3 decades: 1992 — 2021
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Step 4: Filter out tasks. Criteria: data availability, license type, duplicates, etc.



NEVIS Benchmark

106 task in total

~8 million images

Many domains

Number of datasets Data types per year
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NEVIS Benchmark

106 task in total

~8 million images

Many domains

Simple

Number of datasets

Reproducible
Unbiased to task selection
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Example of tasks in NEVIS

1. Aberdeen face database

2. Magellan Venus Volcanoes CVC-MUSCIMA

3. Brodatz KTH-TIPS

4. LandSat UCI UIUC texture

5. Olivetti Face Dataset NORB

6. COIL 20 KTH-TIPS2-a

7. MPEG-7 IAPRTC-12
sketch

Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)

Public

100. Pneumonia Chest X-ray
101. Oxford Flowers 102

102. Synthetic COVID-19 Chest
X-ray
103. ImageNet

104. NIH Chest X-ray

105. covid-19 x-ray
106. Tubercolosis

o


https://arxiv.org/abs/2211.11747

NEVIS dataset | Metrics

e \We evaluate efficacy as the average error:

1 N
SZN;ei

e We evaluate efficiency via cumulative FLOPS. This includes the cost of hyper-parameter
search..

N
cFLOP = Z FLOP;
1=1

Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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Pareto Front

Worst Learner

More Error

More Compute

Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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Evaluation Protocol

Goal: Assess ability to efficiently adapt to future tasks.

) D A9 N\
\99 r)/O\ r)/0\ ,)/Qfl
N [ ] [ ]

L ] | |
meta-train meta-test

STr STS
~70 tasks ~30 tasks

Use meta-train to develop learner/meta-learner. This can be replayed as
many times as desired.

Meta-test is used only for final evaluation. It is not possible to access
future tasks from meta-test. Agent/Learner has only 1life in meta-test.

O
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Baselines: Independent training per task

transfer
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Baselines: Finetune from the most relevant

/’ ___________________________________________________ \\
[ e e \
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. |
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Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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Baselines: Finetune from best encountered model

— > Pick the one with the
Task3data | """ ssxnnn- >
highest kNN accuracy
! !
Construct featuresi l

using previous
models

Task 3

O

Veniat et al. “Efficient continual learning with modular networks and task-driven priors” ICLR 2021



Baselines: Multi-task training
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Pareto Fronts

Curves generated by varying the number of h.p. configurations and the number of weight updates per task.

0.35. Method Name

-~ Indep

FT-d

o
(]
o

MT

Average Error

- PT-ext + FT-d - with pretraining FLOPs

o
N
w

/- BHPO

le19 1e20 le21

cFLOPs

ach point represents about 16 (# h.p. configs per
task) * 107 (# tasks) ~ 1700 experiments! @

Alayrac et al. “Flamingo: a visual language model for few-shot learning” NeurlPS 2022


https://arxiv.org/abs/2204.14198

Average Error

0.354

0.251

Wall clock on a single GPU

This is the region we’ll be focussing on.

N
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Pareto Fronts

0351 Method Name
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Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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Pareto Fronts

Method Name
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Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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Pareto Fronts
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Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission)
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Finetuning pretrained models improves performance
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Finetuning pretrained models improves performance

Average Error

0.274

0.26-

o
N
()

o
N
FN

o
N
w

0.224

0.21

Hypothesis: Nobody will have ever learned enough..
This experimented validated this hypothesis with the current choice of
large models and datasets.

1.145e+21 1.150e+21 1.155e+21 1.160e+21

cFLOPs

=== From pretrained (VLM): Independent ‘q'

== From pretrained (VLM): Finetuning from the most relevant




A — B = “Bfine-tuned from A”
Colors correspond to domains.




Several hubs are formed
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ImageNet: the biggest hub
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Long chains are formed
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Finetuning chain of PT+FT
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T Nevis22 PYTHRCH

rXiv 1 2211.11747 { blog link

NEVIS'22 is a benchmark for measuring the performance of algorithms in the field of continual learning. Please see
the accompanying paper for more details.

Within this Python package, we provide three components,

1. Library code to download and post-process datasets that are not available within tfds, so that the stream used
in the paper can be replicated.

2. A package to combine the NEVIS'22 datasets into a stream, and robustly evaluate learners using the
evaluation protocol proposed in the NEVIS'22 paper.

3. Baseline learners implemented in JAX and PyTorch. The JAX learners are identical to the learners used for the
figures in the paper, the PyTorch learners are provided for example purposes.

https://github.com/deepmind/dm_nevis
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NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
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We introduce the Never Ending Visual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from
computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time. Despite being limited to classification, the resulting
stream has a rich diversity of tasks from OCR, to texture analysis, crowd counting, scene recognition, and so forth. The diversity is also reflected i the wide range of dataset sizes, spanning over four orders of magnitude.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, et with a low entry barrier as it is limited to a single modality and each task s a
classical supervised learning problem. Moreover, we provide a reference implementation including strong baselines and a simple evaluation protocol to compare methods in terms of their trade~off between accuracy and
compute. We hope that NEVIS'22 can be useful to researchers working on continual learning, meta-learning, AutoML and more generally sequential learning, and help these communities join forces towards more robust and
efficient models that efficiently adapt to a never ending stream of data. Implementations have been made available at this https URL.
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Conclusions

e NEVIS'22 complements CTrL.

e Performance measured in terms of efficiency/efficacy trade-off.

e |arge-scale models exhibit better performance when adapted over time.

e Eventually the finetuning approach creates a pool of models.
Observation: Finetuning generates a (very naive) modular system.

Q.: How to improve efficiency by sharing not just initialization but also
parameters across these modules?

Even when aiming at large-scale learning, we need to be able to prototype
quickly, and run sanity checks. CTrL is great for this purpose.
NEVIS'22 offers a good middle ground between toy scale and large-scale.
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Agenda

e Prologue [10min]

e Continual Learning for Large-Scale Learning: Why, What & How [15min]
e Sandboxes for Supervised CL [20min]

e Toy approach to CL [15min]

e Discussion [20min]

References
e Bornschein et al. NEVIS'22 Benchmark (arXiv 2022, in submission) @
e \eniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Designing a Modular Approach

Grow capacity over time to retain plasticity.

Decouple overall model size with amount of parameters and compute
needed to perform any single task.

Scalable

O



Modular network at time t

Existing pool of modules

]
e L m ¢
m O L

layer 2 l l l
modules

layer 1
modules

task 1 task 2 task 3

Mixture of experts with gating performed at the task level.

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 1: Recelve new task

Existing pool of modules

layer 3

modules Data of new task

(

layer 2
modules

layer 1
modules

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 2: Module retrieval

Existing pool of modules Module retrieval

layer 3
modules

Data of new task

Retrieve most relevant modules at each layer.
- E.g.: select modules of networks trained on

most related past tasks.

The retrieval set is a (data-driven) prior.

(

layer 2
modules

layer 1
modules

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 3: Perturb & Search

Existing pool of modules

layer 3
modules

layer 2
modules

layer 1
modules

Data of new task

(

Module retrieval

Train in parallel k variants
and select the best

!

=
|

T
¥

E

e

One could also use REINFORCE to
train the k variants all at once.

|
8

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 4. Pool expansion

Existing pool of modules Module retrieval New pool of modules

layer 3 Arch. Search layer 3
modules Data of new task - modules
- L
— — ] ]
layer 2 V\, layer 2
modules modules
e

layer 1 layer 1

modules \ modules /

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Unrolled Modular Architecture

If tasks relate to each other, an “older” network
can re-use more modules than a “younger” one.
With age, the network grows less.

.
Task T Task 2 Task 3 @

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Results on CTRL
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Results on Slons
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MNTDP achieves highest

average accuracy while
growing sub-linearly in
memory.
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Conclusions

MNTDP is a robust and simple way to grow a modular network.
e Size of search space defines efficiency/efficacy trade-off.
e General idea:
o Retrieve most similar modules
o Perturb & learn
o Add to the existing pool the newly trained modules
e Because of growth, model is not going to lose plasticity over time.

Open questions
e Scaling up
e Efficient architecture search
e How to learn a good initial set of modules

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Conclusions

(Most) ML is continual in a naive and poorly automated way.

As models get bigger, it is more important than ever to make them more
efficient.

CL is about making learning more efficient by leveraging knowledge acquired in
the past.

CL research needs good playgrounds to validate hypotheses. These
playgrounds need to target continual large-scale learning.

Conjecture: A big part to the solution of large-scale learning and CL is
modularization.

o



Could this be the future?
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Some Open Research Questions

How to contribute to the development of large-scale learning without access
to huge computational resources?

Learning is about striking trade-offs: How to formalize and derive practical
algorithms or architectures?

Constraints depend on the setting and application. Is compute the right
constraint?

How to retain efficiency as we scale up?

How to modularize in a distributed way?

How to grow from small to big?

How to do efficient meta-learning?

How do we cross-validate in a never-ending learning setting?

How to add/update/remove knowledge? @
What's the role of memory?
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